【題目】如圖,已知拋物線y=ax2+x+4的對稱軸是直線x=3,且與軸相交于A、B兩點(diǎn)(B點(diǎn)在A點(diǎn)的右側(cè)),與軸交于C點(diǎn).

(1)A點(diǎn)的坐標(biāo)是   ;B點(diǎn)坐標(biāo)是   ;

(2)直線BC的解析式是:   ;

(3)點(diǎn)P是直線BC上方的拋物線上的一動(dòng)點(diǎn)(不與B、C重合),是否存在點(diǎn)P,使△PBC的面積最大.若存在,請求出△PBC的最大面積,若不存在,試說明理由;

(4)若點(diǎn)Mx軸上,點(diǎn)N在拋物線上,以A、C、M、N為頂點(diǎn)的四邊形是平行四邊形時(shí),請直接寫出點(diǎn)M點(diǎn)坐標(biāo).

【答案】(1)A,0) B(8,0);(2) ; (3)存在點(diǎn)P,使△PBC的面積最大,最大面積是16 ;(4)(,0),(4, 0),(,0),(,0).

【解析】

可得a的值,求出解析式.由解析式可得出CB的坐標(biāo),從而得出直線的解析式.運(yùn)用假設(shè)法,連接輔助線可以設(shè)出P,D的坐標(biāo),表達(dá)出相應(yīng)PBC的面積解析式,分析可得出結(jié)果.由平行四邊形的定義可求出答案.

(1)A,0) B(8,0);

(2) ;

(3)假設(shè)存在點(diǎn)P,連結(jié)PB、PC,過點(diǎn)PPDy軸交直線BC于點(diǎn)D,

設(shè)點(diǎn)Pm,

則點(diǎn)Dm,

所以PD=

=

∵點(diǎn)P是直線BC上方的拋物線上的一動(dòng)點(diǎn)(不與B、C重合)

∴當(dāng)時(shí),PBC的面積最大,最大面積是16

∴存在點(diǎn)P,使PBC的面積最大,最大面積是16

(4)(,0),(4, 0),(,0),(,0) .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

我們已經(jīng)學(xué)習(xí)了一元二次方程的多種解法:如因式分解法,開平方法,配方法和公式法,還可以運(yùn)用十字相乘法,請從以下一元二次方程中任選兩個(gè),并選擇你認(rèn)為適當(dāng)?shù)姆椒ń膺@個(gè)方程.

①x2-4x-1=0,②x(2x+1)=8x-3,③x2+3x+1=0,④x2-9=4(x-3)

我選擇第幾個(gè)方程

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】11·湖州)如圖,已知拋物線經(jīng)過點(diǎn)(0,-3),請你確定一個(gè)

b的值,使該拋物線與x軸的一個(gè)交點(diǎn)在(10)和(3,0)之間。你確定的b的值是 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>

(1) (2)2x2+3x—1=0(用配方法解)

(3) (4)(x+1)(x+8)=-2

(5) (6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名學(xué)生在同一小區(qū)居住,一天早晨,甲、乙兩人同時(shí)從家出發(fā)去同一所學(xué)校上學(xué).甲騎自行車勻速行駛.乙步行到公交站恰好乘上一輛公交車,公交車沿公路勻速行駛,公交車的速度分別是甲騎自行車速度和乙步行速度的2倍和5倍,下車后跑步趕到學(xué)校,兩人同時(shí)到達(dá)學(xué)校(上、下車時(shí)間忽略不計(jì)).兩人各自距家的路程y(m)與所用的時(shí)間x(min)之間的函數(shù)圖象如圖所示.

(1)a= ,b=

(2)當(dāng)乙學(xué)生乘公交車時(shí),求yx之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍).

(3)如果乙學(xué)生到學(xué)校與甲學(xué)生相差1分鐘,直接寫出他跑步的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,ACBC,過點(diǎn)C在△ABC外作直線MN,AMNN于點(diǎn)MBNMNN

1)求證:△AMC≌△CNB;

2)求證:MNAM+BN

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC,C = 90°,.DBC上一點(diǎn),且到A,B兩點(diǎn)的距離相等.

(1)用直尺和圓規(guī),作出點(diǎn)D的位置(不寫作法,保留作圖痕跡);

(2)連結(jié)AD,若∠B = 35°,求∠CAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,以為直徑,為圓心的半圓交于點(diǎn),點(diǎn)為弧的中點(diǎn),連接于點(diǎn)的角平分線,且,垂足為點(diǎn)

判斷直線的位置關(guān)系,并說明理由;

,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某同學(xué)把一塊三角形的玻璃打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是(

A.帶①去B.帶②去C.帶③去D.帶①和②去

查看答案和解析>>

同步練習(xí)冊答案