【題目】張老師為了了解班級學生完成數(shù)學課前預習的具體情況,對本班部分學生進行了為期半個月的跟蹤調(diào)查.他將調(diào)查結(jié)果分為四類:A:很好;B:較好;C:一般;D:較差,并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:

(1)請計算出A類男生和C類女生的人數(shù),并將條形統(tǒng)計圖補充完整.

(2)為了共同進步,張老師想從被調(diào)查的A類和D類學生中各隨機機抽取一位同學進行一幫一互助學習,請用畫樹狀圖或列表的方法求出所選兩位同學恰好是一男一女同學的概率.

【答案】(1)A類男生人數(shù)為2,C類女生人數(shù)為2,補全圖形見解析;(2)所選兩位同學恰好是一男一女同學的概率為

【解析】(1)由B類人數(shù)及其所占百分比求得總?cè)藬?shù),再用總?cè)藬?shù)分別乘以A、C類別對應(yīng)百分比求得其人數(shù),據(jù)此結(jié)合條形圖進一步得出答案;
(2)畫樹狀圖列出所有等可能結(jié)果,從中找到所選兩位同學恰好是一男一女同學的結(jié)果數(shù),利用概率公式求解可得.

1)∵被調(diào)查的總?cè)藬?shù)為(7+5)÷60%=20人,
A類別人數(shù)為20×15%=3人、C類別人數(shù)為20×(1-15%-60%-10%)=3,
A類男生人數(shù)為3-1=2、C類女生人數(shù)為3-1=2,
補全圖形如下:

(2)畫樹狀圖得:

∵共有6種等可能的結(jié)果,所選兩位同學恰好是一位男同學和一位女同學的有3種情況,
∴所選兩位同學恰好是一男一女同學的概率為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某超市預測某飲料有發(fā)展前途,用1600元購進一批飲料,面市后果然供不應(yīng)求,又用6000元購進這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價比第一批貴2.

(1)第一批飲料進貨單價多少元?

(2)若二次購進飲料按同一價格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價至少為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列方程解應(yīng)用題:

某商場用8萬元購進一批新款襯衫,上架后很快銷售一空,商場又緊急購進第二批這種襯衫,數(shù)量是第一次的2倍,但進價漲了4/件,結(jié)果共用去17.6萬元.

(1)該商場第一批購進襯衫多少件?

(2)商場銷售這種襯衫時,每件定價都是58元,剩至150件時按八折出售,全部售完.售完這兩批襯衫,商場共盈利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在RtABC中,∠ACB90°,ACBC,分別以AB,BCCA為一邊向△ABC外作正方形ABDE、BCMNCAFG,連接EF、GM、ND,設(shè)△AEF、△BND、△CGM的面積分別為S1、S2、S3

1)猜想S1S2、S3的大小關(guān)系.

2)請對(1)的猜想,任選一個關(guān)系進行證明;

3)若將圖1中的RtABC改為圖2中的任意△ABC,若SABC5,求出S1+S2+S3的值;

4)若將圖2中的任意△ABC改為任意凸四邊形ABCD,若SAEG+SCNK+SIBH+SDFMα,則四邊形ABCD的面積為   (直接用含α的代數(shù)式表示結(jié)果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著新能源汽車的發(fā)展,某公交公司將用新能源公交車淘汰某一條線路上“冒黑煙”較嚴重的燃油公交車,計劃購買A型和B型新能源公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需300萬元;若購買A型公交車2輛,B型公交車1輛,共需270萬元,

(1)求購買A型和B型公交車每輛各需多少萬元?

(2)預計在該條線路上A型和B型公交車每輛年均載客量分別為80萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1000萬元,且確保這10輛公交車在該線路的年均載客量總和不少于900萬人次,則該公司有哪幾種購車方案?哪種購車方案總費用最少?最少總費用是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P在以AB為直徑的半圓內(nèi),連AP、BP,并延長分別交半圓于點C、D,連接AD、BC并延長交于點F,作直線PF,下列說法正確的是:

AC垂直平分BF;AC平分BAF;PFAB;BDAF.

A.①② B.①④ C.②④ D.③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形是矩形紙片,.對折矩形紙片,使重合,折痕為;展平后再過點折疊矩形紙片,使點落在上的點,折痕相交于點;再次展平,連接,,延長于點.以下結(jié)論:①;②;③;④是等邊三角形; 為線段上一動點,的中點,則的最小值是.其中正確結(jié)論的序號是( ).

A. ①②④B. ①④⑤C. ①③④D. ①②③⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們規(guī)定,以二次函數(shù)y=ax2+bx+c的二次項系數(shù)a2倍為一次項系數(shù),一次項系數(shù)b為常數(shù)項構(gòu)造的一次函數(shù)y=2ax+b叫做二次函數(shù)y=ax2+bx+c子函數(shù),反過來,二次函數(shù)y=ax2+bx+c叫做一次函數(shù)y=2ax+b母函數(shù)

1)若一次函數(shù)y=2x-4是二次函數(shù)y=ax2+bx+c子函數(shù),且二次函數(shù)經(jīng)過點(3,0),求此二次函數(shù)的解析式及頂點坐標.

2)若子函數(shù)y=x-6母函數(shù)的最小值為1,求母函數(shù)的函數(shù)表達式.

3)已知二次函數(shù)y=-x2-4x+8子函數(shù)圖象直線lx軸、y軸交于CD兩點,動點P為二次函數(shù)y=-x2-4x+8對稱軸右側(cè)上的動點,求PCD的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線經(jīng)過點A(﹣20),點B04.

1)求這條拋物線的表達式;

2P是拋物線對稱軸上的點,聯(lián)結(jié)AB、PB,如果∠PBO=BAO,求點P的坐標;

3)將拋物線沿y軸向下平移m個單位,所得新拋物線與y軸交于點D,過點DDEx軸交新拋物線于點E,射線EO交新拋物線于點F,如果EO=2OF,求m的值.

查看答案和解析>>

同步練習冊答案