【題目】如圖,△ABC和△AOD是等腰直角三角形,AB=AC,AO=AD,∠BAC=∠OAD=90°,點(diǎn)O是△ABC內(nèi)的一點(diǎn),∠BOC=130°.
(1)由已知條件可知哪兩個(gè)三角形全等__________,理由_________.
(2)求∠DCO的大小.
(3)設(shè)∠AOB=α,那么當(dāng)α為多少度時(shí),△COD是等腰三角形.
【答案】(1)△AOB≌△ADC,SAS;(2)∠DCO=40°;(3)當(dāng)α的度數(shù)為115°或85°或145°時(shí),△AOD是等腰三角形.
【解析】
(1)由已知條件可知△AOB≌△ADC;
(2)先求出∠BOA的大小,又因?yàn)椤?/span>AOB≌△ADC,∠AOB=∠ADC,可得∠ADC與∠AOC的關(guān)系,結(jié)合△AOD是等腰直角三角形,即可求∠DCO的大小;
(3)因?yàn)?/span> △COD是等腰三角形,所以分三種情況討論,CD=CO;OD=CO;CD=OD.
(1) ∵∠BAC=∠OAD=90°
∴∠BAC∠CAO=∠OAD∠CAO
∴∠DAC=∠OAB
在△AOB與△ADC中
,
∴△AOB≌△ADC,
由已知條件可知哪兩個(gè)三角形全等△AOB≌△ADC,理由SAS.
(2)∵∠BOC=130°,
∴∠BOA+∠AOC=360°﹣130°=230°,
∵△AOB≌△ADC
∠AOB=∠ADC,
∴∠ADC+∠AOC=230°,
又∵△AOD是等腰直角三角形,
∴∠DAO=90°,
∴四邊形AOCD中,∠DCO=360°﹣90°﹣230°=40°.
(3)當(dāng)CD=CO時(shí),
∴∠CDO=∠COD===70°
∵△AOD是等腰直角三角形,
∴∠ODA=45°,
∴∠CDA=∠CDO+∠ODA=70°+45°=115°
又∠AOB=∠ADC=α
∴α=115°;
當(dāng)OD=CO時(shí),
∴∠DCO=∠CDO=40°
∴∠CDA=∠CDO+∠ODA=40°+45°=85°
∴α=85°;
當(dāng)CD=OD時(shí),
∴∠DCO=∠DOC=40°
∠CDO=180°﹣∠DCO﹣∠DOC
=180°﹣40°﹣40°
=100°
∴∠CDA=∠CDO+∠ODA=100°+45°=145°
∴α=145°;
綜上所述:當(dāng)α的度數(shù)為115°或85°或145°時(shí),△AOD是等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知FG⊥AB,CD⊥AB,垂足分別為G,D,∠1=∠2,
求證:∠CED+∠ACB=180°,
請(qǐng)你將小明的證明過(guò)程補(bǔ)充完整.
證明:∵FG⊥AB,CD⊥AB,垂足分別為G,D(已知)
∴∠FGB=∠CDB=90°( ).
∴GF∥CD( )
∵GF∥CD(已證)
∴∠2=∠BCD( )
又∵∠1=∠2(已知)
∴∠1=∠BCD( )
∴ ( )
∴∠CED+∠ACB=180°( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn),C,交y軸于點(diǎn)B,交x軸于點(diǎn)D,那么不等式的解集是______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(一)閱讀
求x+6x+11的最小值.
解:x+6x+11
=x2+6x+9+2
=(x+3)2+2
由于(x+3)2的值必定為非負(fù)數(shù),所以(x+3)2+2,即x2+6x+11的最小值為2.
(二)解決問(wèn)題
(1)若m2+2mn+2n2-6n+9=0,求()-3的值;
(2)對(duì)于多項(xiàng)式x2+y-2x+2y+5,當(dāng)x,y取何值時(shí)有最小值,最小值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點(diǎn)E,F分別在AD,BC上,將紙片ABCD沿直線EF折疊,點(diǎn)C落在AD上的一點(diǎn)H處,點(diǎn)D落在點(diǎn)G處,有以下四個(gè)結(jié)論:①HE=HF;②EC平分∠DCH;③線段BF的取值范圍為3≤BF≤4;④當(dāng)點(diǎn)H與點(diǎn)A重合時(shí),EF=2.以上結(jié)論中,你認(rèn)為正確的有( 。﹤(gè).
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D是BC的中點(diǎn),點(diǎn)E、F分別在線段AD及其延長(zhǎng)線上,且DE=DF,給出下列條件:①BE⊥EC;②AB=AC;③BF∥EC;從中選擇一個(gè)條件使四邊形BECF是菱形,你認(rèn)為這個(gè)條件是_______(只填寫序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)y=-的圖象的兩個(gè)分支分布在第_________象限,在每個(gè)象限內(nèi),y隨x的增大而_________,函數(shù)y=的圖象的兩個(gè)分支分布在第_________象限,在每一個(gè)象限內(nèi),y隨x的減小而_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兒童節(jié)期間,某公園游戲場(chǎng)舉行一場(chǎng)活動(dòng).有一種游戲的規(guī)則是:在一個(gè)裝有8個(gè)紅球和若干白球(每個(gè)球除顏色外,其他都相同)的袋中,隨機(jī)摸一個(gè)球,摸到一個(gè)紅球就得到一個(gè)海寶玩具.已知參加這種游戲的兒童有40 000人,公園游戲場(chǎng)發(fā)放海寶玩具8 000個(gè).
(1)求參加此次活動(dòng)得到海寶玩具的頻率?
(2)請(qǐng)你估計(jì)袋中白球的數(shù)量接近多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究與解決問(wèn)題:已知中,,,求它的面積是多少?為此請(qǐng)你進(jìn)行探究,并解答所提問(wèn)題:
(1)已知三邊長(zhǎng)求三角形面積,還需要知道什么?怎么作輔助線?
(2)解:作____________所得三角形和的邊之間有什么重要關(guān)系?
(3)設(shè),分別在兩個(gè)直角三角形中用含的式子表示,并完成解答,求出的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com