【題目】閱讀下列材料:通過小學的學習我們知道,分數(shù)可分為“真分數(shù)”和“假分數(shù)”,而假分數(shù)都可化為常分數(shù),如: = =2+ =2 .我們定義:在分式中,對于只含有一個字母的分式,當分子的次數(shù)大于或等于分母的次數(shù)時,我們稱之為“假分式”;當分子的次數(shù)小于分母的次數(shù)時,我們稱之為“真分式”.如 , 這樣的分式就是假分式;再如: , 這樣的分式就是真分式.類似的,假分式也可以化為帶分式(即:整式與真分式的和的形式).如: =1- ;
解決下列問題:
(1)分式 是 分式(填“真分式”或“假分式”);
(2) 將假分式化為帶分式;
(3)如果 x 為整數(shù),分式 的值為整數(shù),求所有符合條件的 x 的值.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC 中,∠B=60°,∠C=80°,點D,E分別在線段AB,BC 上, 將△BDE 沿直線DE翻折,使B落在B′ 處, B′ D, B′E分別交AC于F,G. 若∠ADF=70°,則∠CGE 的度數(shù)為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某專賣店有,兩種商品.已知在打折前,買60件商品和30件商品用了1080元,買50件商品和10件商品用了840元;,兩種商品打相同折以后,某人買500件商品和450件商品一共比不打折少花1960元,計算打了多少折?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在七年級下冊“證明”的一章的學習中,我們曾做過如下的實驗:
畫∠AOB=90°,并畫∠AOB的平分線OC.
(1)把三角尺的直角頂點落在OC的任意一點P上,使三角尺的兩條直角邊分別與OA、OB相交于點E、F(如圖①).度量PE、PF的長度,這兩條線段相等嗎?
(2)把三角尺繞點P旋轉(如圖②),PE與PF相等嗎?請說明理由.
(3)探究:畫∠AOB=50°,并畫∠AOB的平分線OC,在OC上任取一點P,作∠EPF=130°.∠EPF的兩邊分別與OA、OB相交于E、F兩點(如圖③),PE與PF相等嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探究題:
(1)三條直線相交,最少有__________個交點,最多有__________個交點,分別畫出圖形,并數(shù)出圖形中的對頂角和鄰補角的對數(shù);
(2)四條直線相交,最少有__________個交點,最多有__________個交點,分別畫出圖形,并數(shù)出圖形中的對頂角和鄰補角的對數(shù);
(3)依次類推,n條直線相交,最少有__________個交點,最多有__________個交點,對頂角有__________對,鄰補角有__________對.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠ABC的平分線交AD于點E,過點A作BE的垂線交BE于點F,交BC于點G,連接EG,求證:四邊形ABGE是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線AB∥DF,∠D+∠B=180°,
(1)求證:DE∥BC;
(2)如果∠AMD=75°,求∠AGC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正六邊形A1B1C1D1E1F1的邊長為1,它的六條對角線又圍成一個正六邊形A2B2C2D2E2F2 , 如此繼續(xù)下去,則正六邊形A4B4C4D4E4F4的面積是.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有這樣一個問題:探究同一平面直角坐標系中系數(shù)互為倒數(shù)的正、反比例函數(shù)y= x與y= (k≠0)的圖象性質.
小明根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y= x與y= ,當k>0時的圖象性質進行了探究.
下面是小明的探究過程:
(1)如圖所示,設函數(shù)y= x與y= 圖象的交點為A,B,已知A點的坐標為(﹣k,﹣1),則B點的坐標為;
(2)若點P為第一象限內雙曲線上不同于點B的任意一點.
①設直線PA交x軸于點M,直線PB交x軸于點N.求證:PM=PN.
證明過程如下,設P(m, ),直線PA的解析式為y=ax+b(a≠0).
則 ,
解得
∴直線PA的解析式為
請你把上面的解答過程補充完整,并完成剩余的證明.
②當P點坐標為(1,k)(k≠1)時,判斷△PAB的形狀,并用k表示出△PAB的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com