【題目】閱讀下列材料:通過小學的學習我們知道,分數(shù)可分為真分數(shù)假分數(shù),而假分數(shù)都可化為常分數(shù),如: 2+ 2 .我們定義:在分式中,對于只含有一個字母的分式,當分子的次數(shù)大于或等于分母的次數(shù)時,我們稱之為假分式;當分子的次數(shù)小于分母的次數(shù)時,我們稱之為真分式.如 , 這樣的分式就是假分式;再如: , 這樣的分式就是真分式.類似的,假分式也可以化為帶分式(即:整式與真分式的和的形式).如: =1- ;

解決下列問題:

1)分式 分式(填真分式假分式);

2 將假分式化為帶分式;

3)如果 x 為整數(shù),分式 的值為整數(shù),求所有符合條件的 x 的值.

【答案】(1)真分式;(2x2;3)所有符合條件的x值為0,-2,2,-4

【解析】

(1)利用題中的新定義判斷即可;

(2)根據(jù)題中的方法把原式化為帶分式即可;

(3)原式化為帶分式,根據(jù)x與分式的值都為整數(shù),求出x即可.

解:

(1)真分式

(2)xxx2.

(3)2,由x為整數(shù),分式的值為整數(shù),得到x1=-1,-3,13,解得x=-2,-40,2,則所有符合條件的x值為0,-22,-4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC ,∠B=60°,∠C=80°,點D,E分別在線段AB,BC 上, △BDE 沿直線DE翻折,使B落在B , B D, B′E分別交ACF,G. ∠ADF=70°,則∠CGE 的度數(shù)為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某專賣店有兩種商品.已知在打折前,買60件商品和30件商品用了1080元,買50件商品和10件商品用了840元;兩種商品打相同折以后,某人買500件商品和450件商品一共比不打折少花1960元,計算打了多少折?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在七年級下冊證明的一章的學習中,我們曾做過如下的實驗:

畫∠AOB=90°,并畫∠AOB的平分線OC

1)把三角尺的直角頂點落在OC的任意一點P上,使三角尺的兩條直角邊分別與OA、OB相交于點EF(如圖①).度量PE、PF的長度,這兩條線段相等嗎?

2)把三角尺繞點P旋轉(如圖②),PEPF相等嗎?請說明理由.

3)探究:畫∠AOB=50°,并畫∠AOB的平分線OC,在OC上任取一點P,作∠EPF=130°EPF的兩邊分別與OAOB相交于E、F兩點(如圖③),PEPF相等嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探究題:

1三條直線相交,最少有__________個交點,最多有__________個交點,分別畫出圖形,并數(shù)出圖形中的對頂角和鄰補角的對數(shù);

2四條直線相交,最少有__________個交點最多有__________個交點,分別畫出圖形,并數(shù)出圖形中的對頂角和鄰補角的對數(shù);

3依次類推,n條直線相交最少有__________個交點,最多有__________個交點對頂角有__________,鄰補角有__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠ABC的平分線交AD于點E,過點ABE的垂線交BE于點F,交BC于點G,連接EG,求證:四邊形ABGE是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線ABDF,D+B=180°

1)求證:DEBC;

2)如果∠AMD=75°,求∠AGC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正六邊形A1B1C1D1E1F1的邊長為1,它的六條對角線又圍成一個正六邊形A2B2C2D2E2F2 , 如此繼續(xù)下去,則正六邊形A4B4C4D4E4F4的面積是.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有這樣一個問題:探究同一平面直角坐標系中系數(shù)互為倒數(shù)的正、反比例函數(shù)y= x與y= (k≠0)的圖象性質.
小明根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y= x與y= ,當k>0時的圖象性質進行了探究.
下面是小明的探究過程:

(1)如圖所示,設函數(shù)y= x與y= 圖象的交點為A,B,已知A點的坐標為(﹣k,﹣1),則B點的坐標為;
(2)若點P為第一象限內雙曲線上不同于點B的任意一點.
①設直線PA交x軸于點M,直線PB交x軸于點N.求證:PM=PN.
證明過程如下,設P(m, ),直線PA的解析式為y=ax+b(a≠0).
,
解得
∴直線PA的解析式為
請你把上面的解答過程補充完整,并完成剩余的證明.
②當P點坐標為(1,k)(k≠1)時,判斷△PAB的形狀,并用k表示出△PAB的面積.

查看答案和解析>>

同步練習冊答案