精英家教網 > 初中數學 > 題目詳情

【題目】如圖,矩形ABCD中,AB=3,BC=4,點E是BC邊上一點,連接AE,把∠B沿AE折疊,使點B落在點B′處.當△CEB′為直角三角形時,BE的長為

【答案】或3
【解析】解:當△CEB′為直角三角形時,有兩種情況:

①當點B′落在矩形內部時,如答圖1所示.
連結AC,
在Rt△ABC中,AB=3,BC=4,
∴AC= =5,
∵∠B沿AE折疊,使點B落在點B′處,
∴∠AB′E=∠B=90°,
當△CEB′為直角三角形時,只能得到∠EB′C=90°,
∴點A、B′、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點B′處,
∴EB=EB′,AB=AB′=3,
∴CB′=5﹣3=2,
設BE=x,則EB′=x,CE=4﹣x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2 ,
∴x2+22=(4﹣x)2 , 解得x= ,
∴BE=;
②當點B′落在AD邊上時,如答圖2所示.
此時ABEB′為正方形,∴BE=AB=3.
綜上所述,BE的長為或3.
故答案為:或3.
當△CEB′為直角三角形時,有兩種情況:
①當點B′落在矩形內部時,如答圖1所示.
連結AC,先利用勾股定理計算出AC=5,根據折疊的性質得∠AB′E=∠B=90°,而當△CEB′為直角三角形時,只能得到∠EB′C=90°,所以點A、B′、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點B′處,則EB=EB′,AB=AB′=3,可計算出CB′=2,設BE=x,則EB′=x,CE=4﹣x,然后在Rt△CEB′中運用勾股定理可計算出x.
②當點B′落在AD邊上時,如答圖2所示.此時ABEB′為正方形.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,反比例函數y=(k≠0,x<0)的圖象過等邊三角形AOB的頂點A(﹣1,),已知點B在x軸上.
(1)求反比例函數的表達式;
(2)若要使點B在上述反比例函數的圖象上,需將△AOB向上平移多少個單位長度?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,把矩形ABCD沿EF翻折,點B恰好落在AD邊的B′處,若AE=2,DE=6,∠EFB=60°,則矩形ABCD的面積是( 。

A.12
B.24
C.12
D.16

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,C=90°AC=BC,斜邊AB=4,OAB的中點,以O為圓心,線段OC的長為半徑畫圓心角為90°的扇形OEF 經過點C,則圖中陰影部分的面積為( )

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】將多項式(x2-1)2+6(1-x2)+9因式分解,正確的是(  )

A. (x-2)4 B. (x2-2)2 C. (x2-4)2 D. (x+2)2(x-2)2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC中,C=90°,AC=6BC=8,動點PA點出發(fā),以1cm/s的速度,沿A—C—BB點運動,同時,動點QC點出發(fā),以2cm/s的速度,沿C—B—AA點運動,當其中一點運動到終點時,兩點同時停止運動。設運動時間為t秒,當t=_______秒時,PCQ的面積等于8cm2.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】3a=5,9b=10,則3a2b等于(  )

A. -50 B. 50 C. 500 D. 150

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+cx軸于A(-4,0),B(1,0),交y軸于C點,且OC=2OB.

(1)求拋物線的解析式;

(2)在直線BC上找點D,使ABD為以AB為腰的等腰三角形,求D點的坐標;

(3)在拋物線上是否存在異于B的點P,過P點作PQACQ,使APQABC相似?若存在,請求出P點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了了解學生關注熱點新聞的情況,“兩會”期間,小明對班級同學一周內收看“兩會”新聞的次數情況作了調查,調查結果統(tǒng)計如圖所示(其中男生收看3次的人數沒有標出).
根據上述信息,解答下列問題:
(1)該班級女生人數是多少?女生收看“兩會”新聞次數的中位數是多少?
(2)對于某個群體,我們把一周內收看熱點新聞次數不低于3次的人數占其所在群體總人數的百分比叫做該群體多某熱點新聞的“關注指數”,如果該班級男生對“兩會”新聞的“關注指數”比女生低5%,試求該班級男生人數;
(3)為進一步分析該班級男、女生收看“兩會”新聞次數的特點,小明給出了男生的部分統(tǒng)計量,根據你所學過的統(tǒng)計知識,適當計算女生的有關統(tǒng)計量,進而比較該班級男、女生收看“兩會”新聞次數的波動大。

統(tǒng)計量

平均數(次)

中位數(次)

眾數(次)

方差

該班級男生

3

3

4

2

查看答案和解析>>

同步練習冊答案