【題目】如圖,已知拋物線過點,,過定點的直線:與拋物線交于、兩點,點在點的右側(cè),過點作軸的垂線,垂足為.
(1)求拋物線的解析式;
(2)當(dāng)點在拋物線上運(yùn)動時,判斷線段與的數(shù)量關(guān)系(、、),并證明你的判斷;
(3)為軸上一點,以、、、為頂點的四邊形是菱形,設(shè)點,求自然數(shù)的值.
【答案】(1); (2);(3)6
【解析】
(1)利用待定系數(shù)法求拋物線解析式;
(2)設(shè)B(,),而F(0,2),利用兩點間的距離公式得到,再利用配方法可得到,由于BC=,所以BF=BC;
(3)利用菱形的性質(zhì)得到CB=CF=PF,加上CB=FB,則可判斷△BCF為等邊三角形,所以∠BCF=60°,則∠OCF=30°,于是可計算出CF=4,所以PF=CF=4,從而得到自然數(shù)m的值為6;
解:(1)把點(2,2),(4,5)代入得
,
解得:
所以拋物線解析式為;
(2)BF=BC.
理由如下:
設(shè)B(,),而F(0,2),
∴,
∴,
∵BC⊥x軸,
∴BC=,
∴BF=BC;
(3)如圖,
m為自然數(shù),
則點P在F點上方,
∵以B、C、F、P為頂點的四邊形是菱形,
∴CB=CF=PF,
而CB=FB,
∴BC=CF=BF,
∴△BCF為等邊三角形,
∴∠BCF=60°,
∴∠OCF=30°,
在 中,CF=2OF=4,
∴PF=CF=4,
span>∴P(0,6),
即自然數(shù)m的值為6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一座拱橋是圓弧形,它的跨度AB=60米,拱高PD=18米.
(1)求圓弧所在的圓的半徑r的長;
(2)當(dāng)洪水泛濫到跨度只有30米時,要采取緊急措施,若拱頂離水面只有4米,即PE=4米時,是否要采取緊急措施?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰△ABC中,AB=AC,將線段BA繞點B順時針旋轉(zhuǎn)到BD,使BD⊥AC于H,連結(jié)AD并延長交BC的延長線于點P.
(1)依題意補(bǔ)全圖形;
(2)若∠BAC=2α,求∠BDA的大。ㄓ煤α的式子表示);
(3)小明作了點D關(guān)于直線BC的對稱點點E,從而用等式表示線段DP與BC之間的數(shù)量關(guān)系.請你用小明的思路補(bǔ)全圖形并證明線段DP與BC之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2在第一象限內(nèi)經(jīng)過的整數(shù)點(橫坐標(biāo),縱坐標(biāo)都為整數(shù)的點)依次為A1,A2,A3,…An,…,將拋物線y=x2沿直線L:y=x向上平移,得一系列拋物線,且滿足下列條件:
①拋物線的頂點M1,M2,M3,…Mn,…都在直線L:y=x上;
②拋物線依次經(jīng)過點A1,A2,A3…An,….
則M2016頂點的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,兩個完全相同的三角形紙片 ABC 和 DEC 重合放置,其中∠C=90°,∠B=∠E=30°.
⑴ 操作發(fā)現(xiàn):如圖 2,固定△ABC,使△DEC 繞點 C 旋轉(zhuǎn),當(dāng)點 D 恰好落在 AB 邊上時, 填空:
①線段 DE 與 AC 的位置關(guān)系是 ;
②設(shè)△BDC 的面積為 S1,△AEC 的面積為 S2,則 S1 與 S2 的數(shù)量關(guān)系是 .
⑵ 猜想論證
當(dāng)△DEC 繞點 C 旋轉(zhuǎn)到如圖 3 所示的位置時,請猜想(1)中 S1 與 S2 的數(shù)量關(guān)系是否仍 然成立?若成立,請證明;若不成立,請說明理由.
⑶ 拓展探究
已知∠ABC=60°,BD 平分∠ABC,BD=CD,BE=6,DE∥AB 交 BC 于點 E(如圖 4).若在射線 BA 上存在點 F,使 S△DCF=S△BDE,請求相應(yīng)的 BF 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:已知實數(shù)m,n滿足(2m2+n2+1)(2m2+n2﹣1)=80,試求2m2+n2的值
解:設(shè)2m2+n2=t,則原方程變?yōu)椋?/span>t+1)(t﹣1)=80,整理得t2﹣1=80,t2=81,∴t=±9因為2m2+n2≥0,所以2m2+n2=9.
上面這種方法稱為“換元法”,把其中某些部分看成一個整體,并用新字母代替(即換元),則能使復(fù)雜的問題簡單化.
根據(jù)以上閱讀材料內(nèi)容,解決下列問題,并寫出解答過程.
已知實數(shù)x,y滿足(4x2+4y2+3)(4x2+4y2﹣3)=27,求x2+y2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC中,D為BC邊上一點,E為AC邊上一點,∠ADE=60°
(1)求證:△ABD∽△DCE;
(2)若BD=4,CE=,求△ABC的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c的對稱軸為直線x=﹣1,部分圖象如圖所示,下列判斷中:
①4ac<b2;
②a>b>c;
③一次函數(shù)y=ax+c的圖象不經(jīng)第四象限;
④m(am+b)+b<a(m是任意實數(shù));
⑤3b+2c>0.
其中正確的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣2(k﹣1)x+2.
(1)當(dāng)k=3時,求函數(shù)圖象與x軸的交點坐標(biāo);
(2)函數(shù)圖象的對稱軸與原點的距離為2,當(dāng)﹣1≤x≤5時,求此時函數(shù)的最小值;
(3)函數(shù)圖象交y軸于點B,交直線x=4于點C,設(shè)二次函數(shù)圖象上的一點P(x,y)滿足0≤x≤4時,y≤2,求k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com