【題目】如圖,在同一平面內(nèi),將ABCA點(diǎn)逆時(shí)針旋轉(zhuǎn)到ADE的位置.若ACDE,∠ABD62°,則∠ACB的度數(shù)為(  )

A.56°B.44°C.34°D.40°

【答案】C

【解析】

由旋轉(zhuǎn)的性質(zhì)可得ABAD,∠E=∠C,∠BAD=∠EAC,由等腰三角形的性質(zhì)可求∠ABD=∠ADB62°,由三角形內(nèi)角和定理求出∠BAD56°=∠EAC即可解決問(wèn)題.

解:∵將ABCA點(diǎn)逆時(shí)針旋轉(zhuǎn)到ADE的位置.

ABAD,∠E=∠C,∠BAD=∠EAC,

ABAD,

∴∠ABD=∠ADB62°

∴∠BAD56°=∠EAC,

ACDE

∴∠ADE90°,

∵∠E90°﹣∠EAC34°,

∴∠ACB34°,

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線N過(guò)A(13),B(48),O(0,0)三點(diǎn)

(1)求該拋物線和直線AB的解析式.

(2)平移拋物線N,求同時(shí)滿足以下兩個(gè)條件的平移后的拋物線解析式:①平移后拋物線的頂點(diǎn)在直線AB上;②設(shè)平移后拋物線與y軸交于點(diǎn)C,如果SABC3SABO.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,二次函數(shù)的圖象與x軸交于A(-3,0),B1,0)兩點(diǎn),與y軸交于點(diǎn)C

1)求這個(gè)二次函數(shù)的關(guān)系解析式;

2)點(diǎn)P是直線AC上方的拋物線上一動(dòng)點(diǎn),是否存在點(diǎn)P,使△ACP的面積最大?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;

考生注意:下面的(3)、(4)、(5)題為三選一的選做題,即只能選做其中一個(gè)題目,多答時(shí)只按作答的首題評(píng)分,切記啊!

3)在平面直角坐標(biāo)系中,是否存在點(diǎn)Q,使△BCQ是以BC為腰的等腰直角三角形?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由;

4)點(diǎn)Q是直線AC上方的拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)QQE垂直于x軸,垂足為E.是否存在點(diǎn)Q,使以點(diǎn)BQ、E為頂點(diǎn)的三角形與△AOC相似?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由;

5)點(diǎn)M為拋物線上一動(dòng)點(diǎn),在x軸上是否存在點(diǎn)Q,使以A、C、M、Q為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)yax2+bx+ca≠0)的圖象與x軸的相交情況,關(guān)于下列結(jié)論:

①方程ax2+bx0的兩個(gè)根為x10,x2=﹣4;②b4a0;③9a+3b+c0;其中正確的結(jié)論有( 。

A. 0個(gè)B. 1個(gè)C. 2個(gè)D. 3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察表格:根據(jù)表格解答下列問(wèn)題:

(l) a______,b_____,c_____;

(2) 在右圖的直角坐標(biāo)系中畫出函數(shù)yax2bxc的圖象,并根據(jù)圖象,直接寫出當(dāng)x取什么實(shí)數(shù)時(shí),不等式ax2bxc > 3成立;

3)該圖象與x軸兩交點(diǎn)從左到右依次分別為A、B,與y軸交點(diǎn)為C,求過(guò)這三個(gè)點(diǎn)的外接圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=﹣2x+3x軸交于點(diǎn)C,與y軸交于點(diǎn)B,拋物線yax2+x+c經(jīng)過(guò)B、C兩點(diǎn).

(1)求拋物線的解析式;

(2)如圖,點(diǎn)E是直線BC上方拋物線上的一動(dòng)點(diǎn),當(dāng)△BEC面積最大時(shí),請(qǐng)求出點(diǎn)E的坐標(biāo)和△BEC面積的最大值?

(3)(2)的結(jié)論下,過(guò)點(diǎn)Ey軸的平行線交直線BC于點(diǎn)M,連接AM,點(diǎn)Q是拋物線對(duì)稱軸上的動(dòng)點(diǎn),在拋物線上是否存在點(diǎn)P,使得以PQ、AM為頂點(diǎn)的四邊形是平行四邊形?如果存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果把函數(shù)yx2x2)的圖象和函數(shù)y的圖象組成一個(gè)圖象,并稱作圖象E,那么直線y3與圖象E的交點(diǎn)有_____個(gè);若直線ymm為常數(shù))與圖象E有三個(gè)不同的交點(diǎn),則常數(shù)m的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=mx2+2mx+m-1和直線y=mx+m-1,且m≠0

1)求拋物線的頂點(diǎn)坐標(biāo);

2)試說(shuō)明拋物線與直線有兩個(gè)交點(diǎn);

3)已知點(diǎn)Tt,0),且-1≤t≤1,過(guò)點(diǎn)Tx軸的垂線,與拋物線交于點(diǎn)P,與直線交于點(diǎn)Q,當(dāng)0m≤3時(shí),求線段PQ長(zhǎng)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)、為實(shí)數(shù),且,拋物線軸交于、兩點(diǎn),與軸交于點(diǎn),且拋物線的頂點(diǎn)在直線.是直角三角形,則面積的最大值是( .

A.1B.

C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案