【題目】如圖,點(diǎn)C是線段AB上除點(diǎn)A、B外的任意一點(diǎn),分別以ACBC為邊在線段AB的同旁作等邊△ACD和等邊△BCE,連接AEDCM,連接BDCEN,連接MN

1)求證:AEBD

2)請(qǐng)判斷△CMN的形狀,并說(shuō)明理由。

【答案】1)見(jiàn)解析(2)是等邊三角形,理由見(jiàn)解析.

【解析】

1)由等邊三角形的性質(zhì),結(jié)合條件可證明△ACE≌△DCB,則可證得AEBD;

2)利用(1)的結(jié)論,結(jié)合等邊三角形的性質(zhì)可證明△ACM≌△DCN,可證得MCNC,則可判定△CMN為等邊三角形.

1)證明:

∵△ACD和△BCE是等邊三角形,

ACDCCECB,∠DCA60°,∠ECB60°,

∵∠DCA=∠ECB60°,

∴∠DCA+∠DCE=∠ECB+∠DCE,∠ACE=∠DCB,

在△ACE與△DCB中,

∴△ACE≌△DCBSAS),

AEBD;

2)解:△CMN為等邊三角形,理由如下:

∵由(1)得,△ACE≌△DCB

∴∠CAM=∠CDN,

∵∠ACD=∠ECB60°,而A、CB三點(diǎn)共線,

∴∠DCN60°,

在△ACM與△DCN中,

∴△ACM≌△DCNASA),

MCNC,

∵∠MCN60°,

∴△MCN為等邊三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)操作發(fā)現(xiàn):如圖,點(diǎn)D是等邊△ABC的邊AB上一動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)B不重合),連接CD,以CD為邊在CD上方作等邊△CDE,連接AE,則AEBD有怎樣的數(shù)量關(guān)系?說(shuō)明理由.

2)類(lèi)比猜想:如圖,若點(diǎn)D是等邊△ABC的邊BA延長(zhǎng)線上一動(dòng)點(diǎn),連接CD,以CD為邊在CD上方作等邊CDE,連接AE,請(qǐng)直接寫(xiě)出AEBD滿足的數(shù)量關(guān)系,不必說(shuō)明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】低碳生活,綠色出行的理念已深入人心,現(xiàn)在越來(lái)越多的人選擇騎自行車(chē)上下班或外出旅游.周末,小紅相約到郊外游玩,她從家出發(fā)0.5小時(shí)后到達(dá)甲地,玩一段時(shí)間后按原速前往乙地,剛到達(dá)乙地,接到媽媽電話,快速返回家中.小紅從家出發(fā)到返回家中,行進(jìn)路程y(km)隨時(shí)間x(h)變化的函數(shù)圖象大致如圖所示.

(1)小紅從甲地到乙地騎車(chē)的速度為  km/h;

(2)當(dāng)1.5≤x≤2.5時(shí),求出路程y(km)關(guān)于時(shí)間x(h)的函數(shù)解析式;并求乙地離小紅家多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,點(diǎn)B、F、C、E在同一直線上,AC、DF相交于點(diǎn)G,ABBE,垂足為B,DEBE,垂足為E,且AC=DF,BF=EC.求證:

(1)ABC≌△DEF;

(2)FG=CG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB∥CD,CEBE的交點(diǎn)為E,現(xiàn)作如下操作:

第一次操作,分別作∠ABE∠DCE的平分線,交點(diǎn)為E1

第二次操作,分別作∠ABE1∠DCE1的平分線,交點(diǎn)為E2,

第三次操作,分別作∠ABE2∠DCE2的平分線,交點(diǎn)為E3,,

n次操作,分別作∠ABEn1∠DCEn1的平分線,交點(diǎn)為En

∠En=1度,那∠BEC等于   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一不透明的袋子中裝有2個(gè)白球和1個(gè)紅球,這些球除顏色不同外其余都相同,攪勻后,

(1)從中一次性摸出兩只球,用樹(shù)狀圖或列表表示其中一個(gè)是紅球另一個(gè)是白球的所有結(jié)果并求其概率.

(2)向袋子中放入若干個(gè)紅球(與原紅球相同),攪勻后,從中任取一個(gè)球是紅球的概率為,求放入紅球的個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖已知拋物線yax2bxc經(jīng)過(guò)點(diǎn)A(1,0)點(diǎn)B(3,0)和點(diǎn)C(0,3)

(1)求拋物線的解析式和頂點(diǎn)E的坐標(biāo);

(2)點(diǎn)C是否在以BE為直徑的圓上?請(qǐng)說(shuō)明理由;

(3)點(diǎn)Q是拋物線對(duì)稱(chēng)軸上一動(dòng)點(diǎn),點(diǎn)R是拋物線上一動(dòng)點(diǎn),是否存在點(diǎn)Q、R,使以Q、RC、B為頂點(diǎn)的四邊形是平行四邊形?若存在直接寫(xiě)出點(diǎn)Q、R的坐標(biāo)若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,5),B(1-2),C(4,0).

1)請(qǐng)?jiān)趫D中畫(huà)出ABC關(guān)于y軸對(duì)稱(chēng)的.

2)求ABC的面積.

3)在y軸上畫(huà)出點(diǎn)P,使PA+PC的值最小,保留作圖痕跡.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們定義:如果一個(gè)三角形一條邊上的高等于這條邊,那么這個(gè)三角形叫做等高底三角形,這條邊叫做這個(gè)三角形的等底”.

(1)概念理解:

如圖1,在ABC中,AC=6,BC=3,ACB=30°,試判斷ABC是否是等高底三角形,請(qǐng)說(shuō)明理由.

(2)問(wèn)題探究:

如圖2,ABC等高底三角形,BC等底,作ABC關(guān)于BC所在直線的對(duì)稱(chēng)圖形得到A'BC,連結(jié)AA′交直線BC于點(diǎn)D.若點(diǎn)BAA′C的重心,求的值.

(3)應(yīng)用拓展:

如圖3,已知l1l2,l1l2之間的距離為2.“等高底ABC等底”BC在直線l1上,點(diǎn)A在直線l2上,有一邊的長(zhǎng)是BC倍.將ABC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)45°得到A'B'C,A′C所在直線交l2于點(diǎn)D.求CD的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案