【題目】如圖甲,在四邊形ABCD中,AD//BC,∠C=90°動(dòng)點(diǎn)P從點(diǎn)C出發(fā)沿線段CD向點(diǎn)D運(yùn)動(dòng).到達(dá)點(diǎn)D即停止,若EF分別是AP、BP的中點(diǎn),設(shè)CP=x,△PEF的面積為y,且yx之間的函數(shù)關(guān)系的圖象如圖乙所示,則線段AB長(zhǎng)為( )

A.2B.2C.2D.2

【答案】C

【解析】

根據(jù)三角形中位線定理,得到SPEF=SABP,由圖像可以看出當(dāng)x為最大值CD=4時(shí),SPEF=2,可求出AD=4,當(dāng)x0時(shí),SPEF=3,可求出BC=6;過點(diǎn)AAGBC于點(diǎn)G,根據(jù)勾股定理即可得解.

解:∵E、F分別為APBP的中點(diǎn),

EFAB,EF=AB,

SPEF=SABP

根據(jù)圖像可以看出x的最大值為4,

CD=4

∵當(dāng)PD點(diǎn)時(shí),△PEF的面積為2,

SABP=2×4=8,即SABD=8,

AD===4,

當(dāng)點(diǎn)PC點(diǎn)時(shí),SPEF=3,

SABP=3×4=12,即SABC=12,

BC===6,

過點(diǎn)AAGBC于點(diǎn)G

∴∠AGC=90°,

ADBC,

∴∠ADC+BCD=180°,

∵∠BCD=90°,

∴∠ADC=180°-90°=90°,

∴四邊形AGCD是矩形,

CG=AD=4,AG=CD=4

BG=BC-CG=6-4=2,

AB==2.

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】紙片中,,將它折疊使重合,折痕于點(diǎn),則線段的長(zhǎng)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙OBC于點(diǎn)D,交AB于點(diǎn)E,過點(diǎn)DDF⊥AB,垂足為F,連接DE

1)求證:直線DF⊙O相切;

2)若AE=7,BC=6,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明對(duì)函數(shù)的圖象和性質(zhì)進(jìn)行了探究.已知當(dāng)自變量的值為時(shí),函數(shù)值都為;當(dāng)自變量的值為時(shí),函數(shù)值都為.探究過程如下,請(qǐng)補(bǔ)充完整.

1)這個(gè)函數(shù)的表達(dá)式為 ;

2)在給出的平面直角坐標(biāo)系中,畫出這個(gè)函數(shù)的圖象并寫出這個(gè)函數(shù)的--條性質(zhì):

3)進(jìn)一步探究函數(shù)圖象并解決問題:

①直線與函數(shù)有三個(gè)交點(diǎn),則

②已知函數(shù)的圖象如圖所示,結(jié)合你所畫的函數(shù)圖象,寫出不等式的解集:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在菱形ABCD 中,點(diǎn)E,O,F分別是邊ABAC,AD的中點(diǎn),連接CE、CFOE、OF

1)求證:△BCE≌△DCF;

2)當(dāng)ABBC滿足什么條件時(shí),四邊形AEOF正方形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+b(k0)與軸交于點(diǎn)A(-2.0),與反比例函數(shù)y=(m0)的圖象交于點(diǎn)B(2,n),連接BO,若SAOB=4.

(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式:

(2)若直線AB與y軸的交點(diǎn)為C.求△OCB的面積

(3)根據(jù)圖象,直接寫出當(dāng)x>0時(shí),不等式>kx+b的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PA切⊙O于點(diǎn)A,PC過點(diǎn)O且與⊙O交于B,C兩點(diǎn),若PA=6cm,PB=2cm,則△PAC的面積是_____cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】垃圾的分類處理與回收利用,可以減少污染,節(jié)省資源.某城市環(huán)保部門為了提高宣傳實(shí)效,抽樣調(diào)查了部分居民小區(qū)一段時(shí)間內(nèi)生活垃圾的分類情況,其相關(guān)信息如下:

根據(jù)圖表解答下列問題:

1)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)在扇形統(tǒng)計(jì)圖樣中,產(chǎn)生的有害垃圾C所對(duì)應(yīng)的圓心角 度;

3)調(diào)查發(fā)現(xiàn),在可回收物中塑料類垃圾占13%,每回收1噸塑料類垃圾可獲得0.5噸二級(jí)原料.假設(shè)該城市每月產(chǎn)生的生活垃圾為1000噸,且全部分類處理,那么每月回收的塑料類垃圾可以獲得多少噸二級(jí)原料?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正五邊形的邊長(zhǎng)為2,連接對(duì)角線AD、BE、CE,線段AD分別與BE和CE相交于點(diǎn)M、N,給出下列結(jié)論:①∠AME=108°,②AN2=AMAD;③MN=3-;④S△EBC=2-1,其中正確的結(jié)論是_________(把你認(rèn)為正確結(jié)論的序號(hào)都填上).

查看答案和解析>>

同步練習(xí)冊(cè)答案