【題目】二次函數(shù)的圖像如圖,下列結(jié)論:①;②;③;④.正確的個(gè)數(shù)為( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
【答案】D
【解析】
由拋物線的開口方向,拋物線與y軸交點(diǎn)的位置、對(duì)稱軸即可確定a、b、c的符號(hào),即可對(duì)①進(jìn)行判斷;由拋物線與x軸有兩個(gè)交點(diǎn)判斷②即可;由拋物線的對(duì)稱軸為直線x=-1,可得a=,當(dāng)x=1時(shí),y=a+b+c<0,把a=代入即可對(duì)③進(jìn)行判斷;把x=-1代入方程即可求得相應(yīng)的y的符號(hào),可對(duì)④進(jìn)行判斷;綜上即可得答案.
∵拋物線開口向下,與y軸交于正半軸,
∴a<0,c>0,
∵對(duì)稱軸為直線x==-1,
∴b<0,
∴abc>0,故①正確,
∵拋物線與x軸有兩個(gè)交點(diǎn),
∴b2-4ac>0,即4ac-b2<0,故②正確,
∵=-1,
∴a=,
∵x=1時(shí),a+b+c<0,
∴+b+c<0,即3b+2c<0,故③正確,
當(dāng)x=-1時(shí),a-b+c>0,故④正確,
綜上所述:正確的結(jié)論有①②③④共4個(gè),
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,按下列步驟作圖:
①以點(diǎn)B為圓心,以適當(dāng)長為半徑作弧,交AB于點(diǎn)M.交BC于點(diǎn)N;
②再分別以點(diǎn)M和點(diǎn)N為圓心,大于MN的長為半徑作弧,兩弧交于點(diǎn)G;
③作射線BG交AD于F;
④過點(diǎn)A作AE⊥BF交BF于點(diǎn)P,交BC于點(diǎn)E;
⑤連接EF,PD.
(1)求證:四邊形ABEF是菱形;
(2)若AB=4,AD=6,∠ABC=60°,求DP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y1=x2+bx+c與y2=x2+cx+b(b<c)的圖象相交于點(diǎn)A,分別與y軸相交于點(diǎn)C,B,連接AB、AC.
(1)過點(diǎn)(1,0)作直線l平行于y軸,判斷點(diǎn)A與直線l的位置關(guān)系,并說明理由.
(2)當(dāng)A、C兩點(diǎn)是二次函數(shù)y1=x2+bx+c圖象上的對(duì)稱點(diǎn)時(shí),求b的值.
(3)當(dāng)△ABC是等邊三角形時(shí),求點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,點(diǎn)在上,的平分線交于點(diǎn),交于點(diǎn).過點(diǎn)作的切線交的延長線于點(diǎn),連接,.
(1)求證:,;
(2)過點(diǎn)分別作直線,垂線,垂足為,.若,,請你完成示意圖并求線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=3cm,AC=6cm,將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°后得到△A1B1C,再將△A1B1C沿CB向右平移,使點(diǎn)B2恰好落在斜邊AB上,A2B2與AC相交于點(diǎn)D.
(1)判斷四邊形A1A2B2B1的形狀,并說明理由;
(2)求△A2CD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(4,0)兩點(diǎn),與y軸相交于點(diǎn)C,連結(jié)BC,點(diǎn)P為拋物線上一動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線l,交直線BC于點(diǎn)G,交x軸于點(diǎn)E.
(1)求拋物線的表達(dá)式;
(2)當(dāng)P位于y軸右邊的拋物線上運(yùn)動(dòng)時(shí),過點(diǎn)C作CF⊥直線l,F(xiàn)為垂足,當(dāng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),以P,C,F(xiàn)為頂點(diǎn)的三角形與△OBC相似?并求出此時(shí)點(diǎn)P的坐標(biāo);
(3)如圖2,當(dāng)點(diǎn)P在位于直線BC上方的拋物線上運(yùn)動(dòng)時(shí),連結(jié)PC,PB,請問△PBC的面積S能否取得最大值?若能,請求出最大面積S,并求出此時(shí)點(diǎn)P的坐標(biāo),若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠A=30°,在AB邊上取點(diǎn)D,以BD為直徑作⊙O,與AC邊切于點(diǎn)F,交BC邊于點(diǎn)E.
(1)若BC=3,求⊙O的半徑;
(2)①連接OF、EF,則四邊形OFEB的形狀為 ;
②寫出你的推斷過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線與軸交于點(diǎn),與軸交于,兩點(diǎn),點(diǎn)在點(diǎn)左側(cè).點(diǎn)的坐標(biāo)為,.
(1)求拋物線的解析式;
(2)當(dāng)時(shí),如圖所示,若點(diǎn)是第三象限拋物線上方的動(dòng)點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為,三角形的面積為,求出與的函數(shù)關(guān)系式,并直接寫出自變量的取值范圍;請問當(dāng)為何值時(shí),有最大值?最大值是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形 ABCD 中,AB=8,BC=6,將矩形 ABCD 繞點(diǎn) A 逆時(shí)針旋轉(zhuǎn)得到矩形 AEFG,AE,F(xiàn)G 分別交射線CD 于點(diǎn) PH,連結(jié) AH,若 P 是 CH 的中點(diǎn),則△APH 的周長為( )
A. 15 B. 18 C. 20 D. 24
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com