【題目】二次函數(shù)的圖像如圖,下列結(jié)論:①;②;③;④.正確的個(gè)數(shù)為(

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

【答案】D

【解析】

由拋物線的開口方向,拋物線與y軸交點(diǎn)的位置、對(duì)稱軸即可確定ab、c的符號(hào),即可對(duì)①進(jìn)行判斷;由拋物線與x軸有兩個(gè)交點(diǎn)判斷②即可;由拋物線的對(duì)稱軸為直線x=-1,可得a=,當(dāng)x=1時(shí),y=a+b+c<0,把a=代入即可對(duì)③進(jìn)行判斷;把x=-1代入方程即可求得相應(yīng)的y的符號(hào),可對(duì)④進(jìn)行判斷;綜上即可得答案.

∵拋物線開口向下,與y軸交于正半軸,

a<0,c>0,

∵對(duì)稱軸為直線x==-1,

b<0

abc>0,故①正確,

∵拋物線與x軸有兩個(gè)交點(diǎn),

b2-4ac>0,即4ac-b2<0,故②正確,

=-1

a=,

x=1時(shí),a+b+c<0

+b+c<0,即3b+2c<0,故③正確,

當(dāng)x=-1時(shí),a-b+c>0,故④正確,

綜上所述:正確的結(jié)論有①②③④共4個(gè),

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,按下列步驟作圖:

①以點(diǎn)B為圓心,以適當(dāng)長為半徑作弧,交AB于點(diǎn)M.交BC于點(diǎn)N;

②再分別以點(diǎn)M和點(diǎn)N為圓心,大于MN的長為半徑作弧,兩弧交于點(diǎn)G

③作射線BGADF;

④過點(diǎn)AAEBFBF于點(diǎn)P,交BC于點(diǎn)E

⑤連接EF,PD

1)求證:四邊形ABEF是菱形;

2)若AB4AD6,∠ABC60°,求DP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y1x2+bx+cy2x2+cx+bbc)的圖象相交于點(diǎn)A,分別與y軸相交于點(diǎn)C,B,連接AB、AC

1)過點(diǎn)(10)作直線l平行于y軸,判斷點(diǎn)A與直線l的位置關(guān)系,并說明理由.

2)當(dāng)AC兩點(diǎn)是二次函數(shù)y1x2+bx+c圖象上的對(duì)稱點(diǎn)時(shí),求b的值.

3)當(dāng)ABC是等邊三角形時(shí),求點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,點(diǎn)上,的平分線交于點(diǎn),交于點(diǎn).過點(diǎn)的切線的延長線于點(diǎn),連接,

1)求證:,

2)過點(diǎn)分別作直線,垂線,垂足為,.若,,請你完成示意圖并求線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,ACB=90°AB=3cm,AC=6cm,將ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°后得到A1B1C,再將A1B1C沿CB向右平移,使點(diǎn)B2恰好落在斜邊AB上,A2B2AC相交于點(diǎn)D

1)判斷四邊形A1A2B2B1的形狀,并說明理由;

2)求A2CD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(4,0)兩點(diǎn),與y軸相交于點(diǎn)C,連結(jié)BC,點(diǎn)P為拋物線上一動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線l,交直線BC于點(diǎn)G,交x軸于點(diǎn)E.

(1)求拋物線的表達(dá)式;

(2)當(dāng)P位于y軸右邊的拋物線上運(yùn)動(dòng)時(shí),過點(diǎn)C作CF直線l,F(xiàn)為垂足,當(dāng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),以P,C,F(xiàn)為頂點(diǎn)的三角形與OBC相似?并求出此時(shí)點(diǎn)P的坐標(biāo);

(3)如圖2,當(dāng)點(diǎn)P在位于直線BC上方的拋物線上運(yùn)動(dòng)時(shí),連結(jié)PC,PB,請問PBC的面積S能否取得最大值?若能,請出最大面積S,并求出此時(shí)點(diǎn)P的坐標(biāo),若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠A30°,在AB邊上取點(diǎn)D,以BD為直徑作O,與AC邊切于點(diǎn)F,交BC邊于點(diǎn)E

1)若BC3,求O的半徑;

2連接OF、EF,則四邊形OFEB的形狀為   

寫出你的推斷過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,拋物線軸交于點(diǎn),與軸交于,兩點(diǎn),點(diǎn)在點(diǎn)左側(cè).點(diǎn)的坐標(biāo)為,.

1)求拋物線的解析式;

2)當(dāng)時(shí),如圖所示,若點(diǎn)是第三象限拋物線上方的動(dòng)點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為,三角形的面積為,求出的函數(shù)關(guān)系式,并直接寫出自變量的取值范圍;請問當(dāng)為何值時(shí),有最大值?最大值是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形 ABCD 中,AB=8,BC=6,將矩形 ABCD 繞點(diǎn) A 逆時(shí)針旋轉(zhuǎn)得到矩形 AEFG,AE,F(xiàn)G 分別交射線CD 于點(diǎn) PH,連結(jié) AH,若 P CH 的中點(diǎn),則APH 的周長為(

A. 15 B. 18 C. 20 D. 24

查看答案和解析>>

同步練習(xí)冊答案