【題目】如圖,拋物線y=x2+bx+c與直線y=x+3交于A,B兩點(diǎn),交x軸于C、D兩點(diǎn),連接AC、BC,已知A(0,3),C(﹣3,0).

(1)求拋物線的解析式;

(2)在拋物線對(duì)稱(chēng)軸l上找一點(diǎn)M,使|MB﹣MD|的值最大,并求出這個(gè)最大值;

(3)點(diǎn)Py軸右側(cè)拋物線上一動(dòng)點(diǎn),連接PA,過(guò)點(diǎn)PPQPAy軸于點(diǎn)Q,問(wèn):是否存在點(diǎn)P使得以A,P,Q為頂點(diǎn)的三角形與ABC相似?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)拋物線的解析式是y=x2+x+3;(2)|MB﹣MD|取最大值為;(3)存在點(diǎn)P(1,6).

【解析】(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;

(2)根據(jù)對(duì)稱(chēng)性,可得MC=MD,根據(jù)解方程組,可得B點(diǎn)坐標(biāo),根據(jù)兩邊之差小于第三邊,可得B,C,M共線,根據(jù)勾股定理,可得答案;

(3)根據(jù)等腰直角三角形的判定,可得∠BCE,∠ACO,根據(jù)相似三角形的判定與性質(zhì),可得關(guān)于x的方程,根據(jù)解方程,可得x,根據(jù)自變量與函數(shù)值的對(duì)應(yīng)關(guān)系,可得答案.

(1)將A(0,3),C(﹣3,0)代入函數(shù)解析式,得

解得,

拋物線的解析式是y=x2+x+3;

(2)由拋物線的對(duì)稱(chēng)性可知,點(diǎn)D與點(diǎn)C關(guān)于對(duì)稱(chēng)軸對(duì)稱(chēng),

∴對(duì)l上任意一點(diǎn)有MD=MC,

聯(lián)立方程組 ,

解得(不符合題意,舍),,

∴B(﹣4,1),

當(dāng)點(diǎn)B,C,M共線時(shí),|MB﹣MD|取最大值,即為BC的長(zhǎng),

過(guò)點(diǎn)B作BE⊥x軸于點(diǎn)E,

,

在Rt△BEC中,由勾股定理,得

BC=

|MB﹣MD|取最大值為;

(3)存在點(diǎn)P使得以A,P,Q為頂點(diǎn)的三角形與△ABC相似,

在Rt△BEC中,∵BE=CE=1,

∴∠BCE=45°,

在Rt△ACO中,

∵AO=CO=3,

∴∠ACO=45°,

∴∠ACB=180°﹣45°﹣45°=90°,

過(guò)點(diǎn)P作PQ⊥y軸于Q點(diǎn),∠PQA=90°,

設(shè)P點(diǎn)坐標(biāo)為(x,x2+x+3)(x>0)

①當(dāng)∠PAQ=∠BAC時(shí),△PAQ∽△CAB,

∵∠PGA=∠ACB=90°,∠PAQ=∠CAB,

∴△PGA∽△BCA,

,即,

,

解得x1=1,x2=0(舍去),

∴P點(diǎn)的縱坐標(biāo)為×12+×1+3=6,

∴P(1,6),

②當(dāng)∠PAQ=∠ABC時(shí),△PAQ∽△CBA,

∵∠PGA=∠ACB=90°,∠PAQ=∠ABC,

∴△PGA∽△ACB,

,

=3,

,

解得x1=﹣(舍去),x2=0(舍去)

∴此時(shí)無(wú)符合條件的點(diǎn)P,

綜上所述,存在點(diǎn)P(1,6).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為厲行節(jié)能減排,倡導(dǎo)綠色出行,今年3月以來(lái).“共享單車(chē)”(俗稱(chēng)“小黃車(chē)”)公益活動(dòng)登陸我市中心城區(qū),某公司擬在甲、乙兩個(gè)街道社區(qū)投放一批“小黃車(chē)”,這批自行車(chē)包括A、B兩種不同款型,請(qǐng)回答下列問(wèn)題:

問(wèn)題1:?jiǎn)蝺r(jià)

該公司早期在甲街區(qū)進(jìn)行了試點(diǎn)投放,共投放A、B兩型自行車(chē)各50輛,投放成本共計(jì)7500元,其中B型車(chē)的成本單價(jià)比A型車(chē)高10元,A、B兩型自行車(chē)的單價(jià)各是多少?

問(wèn)題2:投放方式

該公司決定采取如下投放方式:甲街區(qū)每1000人投放a輛“小黃車(chē)”,乙街區(qū)每1000人投放 輛“小黃車(chē)”,按照這種投放方式,甲街區(qū)共投放1500輛,乙街區(qū)共投放1200輛,如果兩個(gè)街區(qū)共有15萬(wàn)人,試求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某?萍夹〗M進(jìn)行野外考察,途中遇到一片濕地,為了安全、迅速通過(guò)這片濕地,他們沿著前進(jìn)路線鋪了若干塊木塊,構(gòu)筑成一條臨時(shí)近道,木板對(duì)地面的壓強(qiáng)是木板面積的反比例函數(shù),其圖像如下圖所示:

1)請(qǐng)直接寫(xiě)出這一函數(shù)表達(dá)式和自變量取值范圍;

2)當(dāng)木板面積為時(shí),壓強(qiáng)是多少?

3)如果要求壓強(qiáng)不超過(guò),木板的面積至少要多大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小馬、小虎兩人共同計(jì)算一道題:(x+a)(2x+b).由于小馬抄錯(cuò)了a的符號(hào),得到的結(jié)果是2x27x+3,小虎漏抄了第二個(gè)多項(xiàng)式中x的系數(shù)得到的結(jié)果是x2+2x3

1)求ab的值;

2)細(xì)心的你請(qǐng)計(jì)算這道題的正確結(jié)果;

3)當(dāng)x=﹣1時(shí),計(jì)算(2)中的代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是(

①經(jīng)過(guò)三個(gè)點(diǎn)一定可以作圓;②若等腰三角形的兩邊長(zhǎng)分別為37,則第三邊長(zhǎng)是37;③一個(gè)正六邊形的內(nèi)角和是其外角和的2倍;④隨意翻到一本書(shū)的某頁(yè),頁(yè)碼是偶數(shù)是隨機(jī)事件;⑤關(guān)于x的一元二次方程x2-(k+3)x+k=0有兩個(gè)不相等的實(shí)數(shù)根.

A.①②③B.①④⑤C.②③④D.③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(﹣2,0),等邊△AOC經(jīng)過(guò)平移或軸對(duì)稱(chēng)或旋轉(zhuǎn)都可以得到△OBD.

(1)△AOC沿x軸向右平移得到△OBD,則平移的距離是   個(gè)單位長(zhǎng)度;△AOC△BOD關(guān)于直線對(duì)稱(chēng),則對(duì)稱(chēng)軸是   ;△AOC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)得到△DOB,則旋轉(zhuǎn)角度可以是   度.

(2)連接AD,交OC于點(diǎn)E,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖1,O是等邊△ABC內(nèi)一點(diǎn),連接OA、OB、OC,且OA=3,OB=4,OC=5,將△BAO繞點(diǎn)B順時(shí)針旋轉(zhuǎn)后得到△BCD,連接OD.求:

旋轉(zhuǎn)角的度數(shù);

線段OD的長(zhǎng);

③∠BDC的度數(shù).

(2)如圖2所示,O是等腰直角△ABC(∠ABC=90°)內(nèi)一點(diǎn),連接OA、OB、OC,將△BAO繞點(diǎn)B順時(shí)針旋轉(zhuǎn)后得到△BCD,連接OD.當(dāng)OA、OB、OC滿足什么條件時(shí),∠ODC=90°?請(qǐng)給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程tx26x+m+4=0有兩個(gè)實(shí)數(shù)根x1、x2

(1)當(dāng)m=1時(shí),求t的取值范圍;

(2)當(dāng)t=1時(shí),若x1、x2滿足3| x1|=x2+4,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在《九章算術(shù)》“勾股”章中有這樣一個(gè)問(wèn)題:

“今有邑方不知大小,各中開(kāi)門(mén),出北門(mén)二十步有木,出南門(mén)十回步,折而西行一千七百七十五步見(jiàn)木.問(wèn)邑方幾何.”用今天的話說(shuō),大意是:如圖,DEFG是一座正方形小城,北門(mén)H位于DG的中點(diǎn),南門(mén)K位于EF的中點(diǎn),出北門(mén)20步到A處有一樹(shù)木,出南門(mén)14步到C,再向西行1775步到B處,正好看到A處的樹(shù)木(即點(diǎn)D在直線AB上),求小城的邊長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案