【題目】如圖,在矩形ABCD中,AB=4,AD=6,點(diǎn)E為AD的中點(diǎn),點(diǎn)P為線段AB上一個(gè)動點(diǎn),連接EP,將△APE沿EP折疊得到△EPF,連接CE,CF,當(dāng)△ECF為直角三角形時(shí),AP的長為______.
【答案】1或.
【解析】
分∠CFE=90°和∠CEF=90°兩種情況求AP得長即可.
①當(dāng)∠CFE=90°時(shí)(如圖所示),△ECF是直角三角形,
由折疊可得,∠PFE=∠A=90°,AE=FE=DE,
∴∠CFP=180°,即點(diǎn)P,F(xiàn),C在一條直線上,
在Rt△CDE和Rt△CFE中,
,
∴Rt△CDE≌Rt△CFE(HL),
∴CF=CD=4,
設(shè)AP=FP=x,則BP=4﹣x,CP=x+4,
在Rt△BCP中,BP2+BC2=PC2,即(4﹣x)2+62=(x+4)2,
解得x=,即AP=;
②當(dāng)∠CEF=90°時(shí)(如圖所示),△ECF是直角三角形,
過F作FH⊥AB于H,作FQ⊥AD于Q,則∠FQE=∠D=90°,
又∵∠FEQ+∠CED=90°=∠ECD+∠CED,
∴∠FEQ=∠ECD,
∴△FEQ∽△ECD,
∴,即,
解得FQ=,QE= ,
∴AQ=HF=,AH=,
設(shè)AP=FP=x,則HP=﹣x,
∵Rt△PFH中,HP2+HF2=PF2,即(﹣x)2+()2=x2,
解得x=1,即AP=1.
綜上所述,AP的長為1或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某旅行社推出一條成本價(jià)為500元/人的省內(nèi)旅游線路.游客人數(shù)(人/月)與旅游報(bào)價(jià)(元/人)之間的關(guān)系為,已知:旅游主管部門規(guī)定該旅游線路報(bào)價(jià)在800元/人~1200元/人之間.
(1)要將該旅游線路每月游客人數(shù)控制在200人以內(nèi),求該旅游線路報(bào)價(jià)的取值范圍;
(2)求經(jīng)營這條旅游線路每月所需要的最低成本;
(3)當(dāng)這條旅游線路的旅游報(bào)價(jià)為多少時(shí),可獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1∥l2∥l3,且l1與l2的距離為1,l2與l3的距離為3.把一塊含有45°角的直角三角板如圖所示放置,頂點(diǎn)A,B,C恰好分別落在三條直線上,AC與直線l2交于點(diǎn)D,則線段BD的長度為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,E是CD上一點(diǎn),動點(diǎn)P從點(diǎn)A出發(fā)沿折線AE→EC→CB運(yùn)動到點(diǎn)B時(shí)停止,動點(diǎn)Q從點(diǎn)A沿AB運(yùn)動到點(diǎn)B時(shí)停止,它們的速度均為每秒1cm.如果點(diǎn)P、Q同時(shí)從點(diǎn)A處開始運(yùn)動,設(shè)運(yùn)動時(shí)間為x(s),△APQ的面積為ycm2,已知y與x的函數(shù)圖象如圖2所示,以下結(jié)論:①AB=5cm;②cos∠AED= ;③當(dāng)0≤x≤5時(shí),y=;④當(dāng)x=6時(shí),△APQ是等腰三角形;⑤當(dāng)7≤x≤11時(shí),y=.其中正確的有( 。
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn):如圖1,在Rt△ABC中,AB=AC,D為BC邊上一點(diǎn)(不與點(diǎn)B、C重合)將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,連接EC,則線段BD與CE的數(shù)量關(guān)系是 ,位置關(guān)系是 ;
(2)探究證明:如圖2,在Rt△ABC與Rt△ADE中,AB=AC,AD=AE,將△ADE繞點(diǎn)A旋轉(zhuǎn),使點(diǎn)D落在BC的延長線上時(shí),連接EC,寫出此時(shí)線段AD,BD,CD之間的等量關(guān)系,并證明;
(3)拓展延仲:如圖3,在四邊形ABCF中,∠ABC=∠ACB=∠AFC=45°.若BF=13,CF=5,請直接寫出AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有大小兩種貨車,3輛大貨車與4輛小貨車一次可以運(yùn)貨18噸,2輛大貨車與6輛小貨車一次可以運(yùn)貨17噸.
(1)請問1輛大貨車和1輛小貨車一次可以分別運(yùn)貨多少噸?
(2)目前有33噸貨物需要運(yùn)輸,貨運(yùn)公司擬安排大小貨車共計(jì)10輛,全部貨物一次運(yùn)完,其中每輛大貨車一次運(yùn)費(fèi)花費(fèi)130元,每輛小貨車一次運(yùn)貨花費(fèi)100元,請問貨運(yùn)公司應(yīng)如何安排車輛最節(jié)省費(fèi)用?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校七年級(1)班班主任對本班學(xué)生進(jìn)行了“我最喜歡的課外活動”的調(diào)查,并將調(diào)查結(jié)果分為書法和繪畫類(記為A)、音禾類(記為B)、球類(記為C)、其他類(記為D).根據(jù)調(diào)査結(jié)果發(fā)現(xiàn)該班每個(gè)學(xué)生都進(jìn)行了登記且每人只登記了一種自己最喜歡的課外活動.班主任根據(jù)調(diào)査情況把學(xué)生進(jìn)行了歸類,并制作了如下兩幅統(tǒng)計(jì)圖.請你結(jié)合圖中所給信息解答下列同題:
(1)七年級(1)班學(xué)生總?cè)藬?shù)為______人,扇形統(tǒng)計(jì)圖中D類所對應(yīng)扇形的圓心角為______度,請補(bǔ)全條形統(tǒng)計(jì)圖;
(2)學(xué)校將舉行書法和繪畫比賽,每班需派兩名學(xué)生參加,A類4名學(xué)生中有兩名學(xué)生擅長書法,另兩名學(xué)生擅長繪畫.班主任現(xiàn)從A類4名學(xué)生中隨機(jī)抽取兩名學(xué)生參加比賽,請你用列表或畫樹狀圖的方法求出抽到的兩名學(xué)生恰好是一名擅長書法,另一名擅長繪畫的概率.
(3)如果全市有5萬名初中生,那么全市初中生中,喜歡球類的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系xOy中,拋物線y=與y軸交于點(diǎn)A,頂點(diǎn)為B,直線l:y=-x+b經(jīng)過點(diǎn)A,與拋物線的對稱軸交于點(diǎn)C,點(diǎn)P是對稱軸上的一個(gè)動點(diǎn),若AP+PC的值最小,則點(diǎn)P的坐標(biāo)為( )
A. (3,1)
B. (3,)
C. (3,)
D. (3,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,點(diǎn)A、B、C的坐標(biāo)分別為(﹣1,3)、(﹣4,1)、(﹣2,1),將△ABC沿一確定方向平移得到△A1B1C1,點(diǎn)B的對應(yīng)點(diǎn)B1的坐標(biāo)是(1,2),則點(diǎn)A1,C1的坐標(biāo)分別是 ( 。
A. A1(4,4),C1(3,2) B. A1(3,3),C1(2,1)
C. A1(4,3),C1(2,3) D. A1(3,4),C1(2,2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com