【題目】如圖,在矩形中, ,頂點在坐標(biāo)原點,頂點的坐標(biāo)為(8,6).
(1)頂點的坐標(biāo)為( , ),頂點的坐標(biāo)為( , );
(2)現(xiàn)有動點、分別從、同時出發(fā),點沿線段向終點運動,速度為每秒2個單位,點沿折線→→向終點運動,速度為每秒個單位.當(dāng)運動時間為2秒時,以點、、頂點的三角形是等腰三角形,求的值.
(3)若矩形以每秒個單位的速度沿射線下滑,直至頂點到達坐標(biāo)原點時停止下滑.設(shè)矩形在軸下方部分的面積為,求關(guān)于滑行時間的函數(shù)關(guān)系式,并寫出相應(yīng)自變量的取值范圍.
【答案】(1)頂點C的坐標(biāo)為,頂點B的坐標(biāo)為;(2)或;(3).
【解析】試題分析:(1) 連接AC、OB,過點C作CEx軸, ADx軸,利用矩形的性質(zhì),證明,所以可得到B,C坐標(biāo).(2) 分類討論,當(dāng)PQ=CQ時,過點Q作QD ,垂足為D,求出k值,當(dāng)CP=CQ時,OQ+OA=11,求出k值,(3)分類討論,當(dāng):當(dāng)0時.,可求出關(guān)于滑行時間的函數(shù)關(guān)系式,當(dāng)4時.過點C′作C′E ,求出函數(shù)關(guān)系式
試題解析:
解:(1)如圖1所示:連接AC、OB,過點C作CEx軸, ADx軸,
A(8,6),AD=6,OD=8, CEx軸, ADx,
∠CEO=∠ADO,
是矩形,
,
,
,
,
為矩形,F為AC、OB的中點.
設(shè)點B的坐標(biāo)為(x,y).則,計算得出:x=5,y=10,
點B的坐標(biāo)為(5,10).
答案是: C(-3,4),B(5,10)
(2)由兩點間的距離公式可以知道:,OA=10,
PC=4,
PQ>PC.
如圖2所示:V
,
,
四邊形CDQO為矩形.
OQ=CD=2,
AQ=8, k=2.
如圖3所示:當(dāng)CP=CQ時,OQ+OA=11.
則k=.
綜上所述,當(dāng)k=4或k=.時, CQP為等腰三角形.
(3)如圖4所示:當(dāng)0時.
,
∴tan∠FOO’=,OO’=,
∴FO’=∴S=.
如圖5所示:當(dāng)4時.過點C′作C′E
tan∠CEO′=,O′C′=5,
∴O’E=,C’D=,
∴S=O’C’(C’D+O’E)= .
綜上所述,S與t的關(guān)系式為
S=,
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若是由ABC平移后得到的,且中任意一點經(jīng)過平移后的對應(yīng)點為
(1)求點小的坐標(biāo)。
(2)求的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,山坡AB的坡度i=1:,AB=10米,AE=15米.在高樓的頂端豎立一塊倒計時牌CD,在點B處測量計時牌的頂端C的仰角是45°,在點A處測量計時牌的底端D的仰角是60°,求這塊倒計時牌CD的高度.(測角器的高度忽略不計,結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一條東西走向的商業(yè)街上,依次有書店(記為A)、冷飲店(記為B)、鞋店(記為C),冷飲店位于鞋店西邊50m處,鞋店位于書店東邊60m處,王平先去書店,然后沿著這條街向東走了30m至D處,接著向西走50m到達E處.
(1)以A為原點、向東為正方向畫數(shù)軸,在數(shù)軸上表示出上述A,B,C,D,E的位置;
(2)若在這條街上建一家超市,使超市與鞋店C分居E點兩側(cè),且到E點的距離相等,問超市在冷飲店的什么方向?距離多遠(yuǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三角形ABC與三角形在平面直角坐標(biāo)系中的位置如圖所示,三角形是由三角形ABC經(jīng)過平移得到的.
(1)分別寫出點的坐標(biāo);
(2)說明三角形是由三角形ABC經(jīng)過怎樣的平移得到的;
(3)若點是三角形ABC內(nèi)的一點,則平移后點P在三角形內(nèi)的對應(yīng)點為P‘,寫出點P’的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,AE平分∠BAD,交BC于點E,BF平分∠ABC,交AD于點F,AE與BF交于點P,連接EF,PD.
(1)求證:四邊形ABEF是菱形;
(2)若AB=4,AD=6,∠ABC=60°,求tan∠DPF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,D為邊AB的中點,E,F分別為邊AC,BC上的點,且AE=AD,BF=BD.若DE=2,DF=4,則AB的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,D為AB邊上一點,連接CD,E為CD的中點,連接BE并延長至點F,使得EF=EB,連接DF交AC于點G,連接CF,
(1)求證:四邊形DBCF是平行四邊形
(2)若∠A=30°,BC=4,CF=6,求CD的長
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com