【題目】如圖,在矩形中, ,頂點在坐標(biāo)原點,頂點的坐標(biāo)為(8,6).

(1)頂點的坐標(biāo)為( , ),頂點的坐標(biāo)為( , );

(2)現(xiàn)有動點、分別從同時出發(fā),點沿線段向終點運動,速度為每秒2個單位,點沿折線向終點運動,速度為每秒個單位.當(dāng)運動時間為2秒時,以點、、頂點的三角形是等腰三角形,求的值.

(3)若矩形以每秒個單位的速度沿射線下滑,直至頂點到達坐標(biāo)原點時停止下滑.設(shè)矩形軸下方部分的面積為,求關(guān)于滑行時間的函數(shù)關(guān)系式,并寫出相應(yīng)自變量的取值范圍.

【答案】1)頂點C的坐標(biāo)為,頂點B的坐標(biāo)為;(2;(3.

【解析】試題分析:(1) 連接ACOB,過點CCEx, ADx,利用矩形的性質(zhì),證明所以可得到B,C坐標(biāo).(2) 分類討論,當(dāng)PQ=CQ,過點QQD ,垂足為D,求出k值,當(dāng)CP=CQ,OQ+OA=11,求出k值,(3)分類討論,當(dāng):當(dāng)0.,可求出關(guān)于滑行時間的函數(shù)關(guān)系式,當(dāng)4.過點C′C′E 求出函數(shù)關(guān)系式
試題解析:

:(1)如圖1所示:連接AC、OB,過點CCEx, ADx,

A(8,6),AD=6,OD=8, CEx, ADx,
CEO=ADO,

是矩形,

,
,

,

,
為矩形,FACOB的中點.
設(shè)點B的坐標(biāo)為(x,y).,計算得出:x=5,y=10,
B的坐標(biāo)為(5,10).
答案是: C(-3,4),B(5,10)
(2)由兩點間的距離公式可以知道:,OA=10,
PC=4,

PQ>PC.
如圖2所示:V

,

,
四邊形CDQO為矩形.
OQ=CD=2,
AQ=8, k=2.
如圖3所示:當(dāng)CP=CQ,OQ+OA=11.

k=.
綜上所述,當(dāng)k=4k=., CQP為等腰三角形.
(3)如圖4所示:當(dāng)0.

,

tanFOO’=,OO’=,
FO’=S=.
如圖5所示:當(dāng)4.過點C′C′E

tanCEO′=,O′C′=5,
O’E=,C’D=,

S=O’C’(C’D+O’E)= .
綜上所述,St的關(guān)系式為

S=,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若是由ABC平移后得到的,且中任意一點經(jīng)過平移后的對應(yīng)點為

(1)求點小的坐標(biāo)。

(2)的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ABAD,AC5,∠DAB=∠DCB90°,則四邊形ABCD的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,山坡AB的坡度i=1:,AB=10米,AE=15米.在高樓的頂端豎立一塊倒計時牌CD,在點B處測量計時牌的頂端C的仰角是45°,在點A處測量計時牌的底端D的仰角是60°,求這塊倒計時牌CD的高度.(測角器的高度忽略不計,結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.414,≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一條東西走向的商業(yè)街上,依次有書店(記為A)、冷飲店(記為B)、鞋店(記為C),冷飲店位于鞋店西邊50m處,鞋店位于書店東邊60m處,王平先去書店,然后沿著這條街向東走了30mD處,接著向西走50m到達E處.

1)以A為原點、向東為正方向畫數(shù)軸,在數(shù)軸上表示出上述A,B,C,DE的位置;

2)若在這條街上建一家超市,使超市與鞋店C分居E點兩側(cè),且到E點的距離相等,問超市在冷飲店的什么方向?距離多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角形ABC與三角形在平面直角坐標(biāo)系中的位置如圖所示,三角形是由三角形ABC經(jīng)過平移得到的.

1)分別寫出點的坐標(biāo);

2)說明三角形是由三角形ABC經(jīng)過怎樣的平移得到的;

3)若點是三角形ABC內(nèi)的一點,則平移后點P在三角形內(nèi)的對應(yīng)點為P‘,寫出點P’的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AE平分BAD,交BC于點E,BF平分ABC,交AD于點F,AEBF交于點P,連接EF,PD

1)求證:四邊形ABEF是菱形;

2)若AB=4,AD=6,ABC=60°,求tanDPF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,D為邊AB的中點,E,F分別為邊ACBC上的點,且AE=AD,BF=BD.若DE=2,DF=4,則AB的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,DAB邊上一點,連接CD,ECD的中點,連接BE并延長至點F,使得EF=EB,連接DFAC于點G,連接CF,

1)求證:四邊形DBCF是平行四邊形

2)若∠A=30°,BC=4,CF=6,求CD的長

查看答案和解析>>

同步練習(xí)冊答案