分析 由矩形的性質(zhì)得出BC=AD=2$\sqrt{3}$,AC=BD,∠ABC=90°,由勾股定理求出AC,得出AC,求出AB=$\frac{1}{2}$AC,得出∠ACB=30°,求出AC=CE,由等腰三角形的性質(zhì)得出∠E=∠CAE,再由三角形的外角性質(zhì)即可得出∠E=15°.
解答 解:連接AC,如圖所示:
∵四邊形ABCD是矩形,
∴BC=AD=2$\sqrt{3}$,AC=BD,∠ABC=90°,
∴AC=$\sqrt{A{B}^{2}+B{C}^{2}}$=$\sqrt{{2}^{2}+(2\sqrt{3})^{2}}$=4,
∴AB=$\frac{1}{2}$AC,
∴∠ACB=30°,
∵BD=CE,
∴AC=CE,
∴∠E=∠CAE,
∵∠ACB=∠E+∠CAE,
∴∠E=15°;
故答案為:15°.
點(diǎn)評(píng) 本題考查了矩形的性質(zhì)、勾股定理、等腰三角形的性質(zhì)、含30°角的直角三角形的判定等知識(shí);熟練掌握矩形的性質(zhì),求出∠ACB=30°是解決問題的突破口.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 10 | C. | 12 | D. | 15 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 2.5 | D. | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | ①的條件是n2<1 | B. | ①是真命題 | ||
C. | ②的條件是如果一個(gè)角是銳角 | D. | ②是假命題 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | +10 | B. | -10 | C. | $+\frac{1}{10}$ | D. | $-\frac{1}{10}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com