【題目】如圖①,已知拋物線y=ax2+bx+3(a≠0)與x軸交于點(diǎn)A(1,0)和點(diǎn)B(﹣3,0),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)設(shè)拋物線的對(duì)稱軸與x軸交于點(diǎn)M,問在對(duì)稱軸上是否存在點(diǎn)P,使△CMP為等腰三角形?若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)如圖②,若點(diǎn)E為第二象限拋物線上一動(dòng)點(diǎn),連接BE、CE,求四邊形BOCE面積的最大值,并求此時(shí)E點(diǎn)的坐標(biāo).
【答案】解:(1)
(2)存在P1(-1, )、P2(1,6),P3(1, )
(3)連OE設(shè)四邊形BOCE的面積為S,點(diǎn)E的坐標(biāo)為()
∵E在第二象限
∴3<x<0 -x2-2x+3>0
∵S=S△BOE+S△COE=+×3×(-×)
=
∵-3<x<0
∴當(dāng)x=-時(shí),S最大為
此時(shí),E()
【解析】試題分析:(1)利用待定系數(shù)法求函數(shù)解析式即可;(2)分CP=MP、CM=CP、CM=MP三種情況討論,(3)過點(diǎn)E作EF⊥x軸于點(diǎn)F,設(shè)E(a,--2a+3)(-3<a<0),然后用a表示出四邊形BOCE面積,然后利用二次函數(shù)的性質(zhì)確定最大值即可得到點(diǎn)E坐標(biāo).
試題解析:解︰(1)由題知︰,解得︰
∴所求拋物線解析式為︰
(2)存在符合條件的點(diǎn)P,
其坐標(biāo)為P(-1,)或P(-1,-)或P(-1,6)或P(-1,)
(3)解法①:
過點(diǎn)E作EF⊥x軸于點(diǎn)F,設(shè)E(a,--2a+3)(-3<a<0)
∴EF=--2a+3,BF=a+3,OF=-a
∴S四邊形BOCE=BF·EF+(OC+EF)·OF
=(a+3)·(--2a+3)+(--2a+6)·(-a)
==-+
∴當(dāng)a=-時(shí),S四邊形BOCE最大,且最大值為.
此時(shí),點(diǎn)E坐標(biāo)為(-,)
解法②:
過點(diǎn)E作EF⊥x軸于點(diǎn)F,設(shè)E(x,y)(-3<x<0)
則S四邊形BOCE=(3+y)·(-x)+(3+x)·y
=(y-x)=()=-+
∴當(dāng)x=-時(shí),S四邊形BOCE最大,且最大值為.此時(shí),點(diǎn)E坐標(biāo)為(-,)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計(jì)算正確的是( )
A.(a3)2=a5
B.a6÷a3=a2
C.(ab)2=a2b2
D.(a+b)2=a2+b2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知矩形ABCD,E為AD邊上一動(dòng)點(diǎn),過A,B,E三點(diǎn)作⊙O,P為AB的中點(diǎn),連接OP,
(1)求證:BE是⊙O的直徑且OP⊥AB;
(2)若AB=BC=8,AE=6,試判斷直線DC與⊙O的位置關(guān)系,并說明理由;
(3)如圖2,若AB=10,BC=8,⊙O與DC邊相交于H,I兩點(diǎn),連結(jié)BH,當(dāng)∠ABE=∠CBH時(shí),求△ABE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A(5,6)與點(diǎn)B關(guān)于x軸對(duì)稱,則點(diǎn)B的坐標(biāo)為( )
A. (5,6) B. (-5,-6) C. (-5,6) D. (5,-6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們給出如下定義:若一個(gè)四邊形的兩條對(duì)角線相等,則稱這個(gè)四邊形為等對(duì)角線四邊形.請(qǐng)解答下列問題:
(1)寫出你所學(xué)過的特殊四邊形中是等對(duì)角線四邊形的兩種圖形的名稱;
(2)探究:當(dāng)?shù)葘?duì)角線四邊形中兩條對(duì)角線所夾銳角為60°時(shí),這對(duì)60°角所對(duì)的兩邊之和與其中一條對(duì)角線的大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市今年中考理化實(shí)驗(yàn)操作考試,采用學(xué)生抽簽方式?jīng)Q定自己的考試內(nèi)容.規(guī)定每位考生必須在三個(gè)物理實(shí)驗(yàn)(用紙簽A、B、C表示)和三個(gè)化學(xué)試驗(yàn)(用紙簽D、E、F表示)中各抽取一個(gè)實(shí)驗(yàn)操作進(jìn)行考試,小剛在看不到紙簽的情況下,分別從中各隨機(jī)抽取一個(gè).用列表或畫樹狀圖的方法求小剛抽到物理實(shí)驗(yàn)B和化學(xué)實(shí)驗(yàn)F的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com