【題目】我們給出如下定義:若一個(gè)四邊形的兩條對(duì)角線相等,則稱(chēng)這個(gè)四邊形為等對(duì)角線四邊形.請(qǐng)解答下列問(wèn)題:
(1)寫(xiě)出你所學(xué)過(guò)的特殊四邊形中是等對(duì)角線四邊形的兩種圖形的名稱(chēng);
(2)探究:當(dāng)?shù)葘?duì)角線四邊形中兩條對(duì)角線所夾銳角為60°時(shí),這對(duì)60°角所對(duì)的兩邊之和與其中一條對(duì)角線的大小關(guān)系,并證明你的結(jié)論.
【答案】
(1)
【解答】梯形、矩形、正方形
(2)
【解答】結(jié)論:等對(duì)角線四邊形中兩條對(duì)角線所夾銳角為60°時(shí),這對(duì)60°角所對(duì)的兩邊之和大于或等于一條對(duì)角線的長(zhǎng).
已知:四邊形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,AC=BD,
且∠AOD=60度.
求證:BC+AD≥AC.
證明:過(guò)點(diǎn)D作DF∥AC,在DF上截取DE,使DE=AC.
連接CE,BE.
故∠EDO=60°,四邊形ACED是平行四邊形.
∵AC=DE,AC=BD,
∴DE=BD,
∵∠EDO=60°,
∴△BDE是等邊三角形.
所以DE=BE=AC.
①當(dāng)BC與CE不在同一條直線上時(shí)(如圖1),
在△BCE中,有BC+CE>BE.
所以BC+AD>AC.
②當(dāng)BC與CE在同一條直線上時(shí)(如圖2),
則BC+CE=BE.
因此BC+AD=AC
綜合①、②,得BC+AD≥AC.
即等對(duì)角線四邊形中兩條對(duì)角線所夾角為60°時(shí),這對(duì)60°角所對(duì)的兩邊之和大于或等于其中一條對(duì)角線的長(zhǎng).
【解析】(1)等腰梯形、矩形、正方形,任選兩個(gè)即可;(2)等對(duì)角線四邊形中兩條對(duì)角線所夾銳角為60°時(shí),這對(duì)60°角所對(duì)的兩邊之和大于或等于一條對(duì)角線的長(zhǎng).分兩種情況證明:當(dāng)BC與CE不在同一條直線上時(shí),60°角所對(duì)的兩邊之和大于其中一條對(duì)角線的長(zhǎng);當(dāng)BC與CE在同一條直線上時(shí)60°角所對(duì)的兩邊之和等于其中一條對(duì)角線的長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C在⊙O上,過(guò)點(diǎn)C的直線與AB的延長(zhǎng)線交于點(diǎn)P,AC=PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線;
(2)點(diǎn)M是弧AB的中點(diǎn),CM交AB于點(diǎn)N,若AB=4,求MN·MC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,直線OM是正比例函數(shù)的圖象,點(diǎn)A的坐標(biāo)為(1,0),在直線OM上找一點(diǎn)N,使△ONA是等腰三角形,則符合條件的點(diǎn)N有( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先化簡(jiǎn),再求值
已知|x﹣2|+(y+1)2=0,求2x2﹣[5xy﹣3(x2﹣y2)]﹣5(﹣xy+y2)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC是等邊三角形,D、E分別在邊BC、AC上,且CD=CE,連接DE并延長(zhǎng)至點(diǎn)F,使EF=AE,連接AF、BE和CF.
(1)請(qǐng)?jiān)趫D中找出一對(duì)全等三角形,用符號(hào)“≌”表示,并加以證明;
(2)判斷四邊形ABDF是怎樣的四邊形,并說(shuō)明理由;
(3)若AB=6,BD=2DC,求四邊形ABEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果m是從0,1,2,3四個(gè)數(shù)中任取的一個(gè)數(shù),n是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),那么關(guān)于x的一元二次方程x2-2mx+n2=0有實(shí)數(shù)根的概率為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù):y=ax2-bx+b(a>0,b>0)圖象頂點(diǎn)的縱坐標(biāo)不大于.
(1)求該二次函數(shù)圖象頂點(diǎn)的橫坐標(biāo)的取值范圍;
(2)若該二次函數(shù)圖象與軸交于A、B兩點(diǎn),求線段AB長(zhǎng)度的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】命題“和為180°的兩個(gè)角互為補(bǔ)角”的逆命題是___________________________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com