【題目】如圖坐標(biāo)系中,O(0,0),A(3,3),B(6,0),將△OAB沿直線CD折疊,使點(diǎn)A恰好落在線段OB上的點(diǎn)E處,若OE=,則AC:AD的值是( )
A.1:2B.2:3C.6:7D.7:8
【答案】B
【解析】
過A作AF⊥OB于F,如圖所示:根據(jù)已知條件得到AF=3,OF=3,OB=6,求得∠AOB=60°,推出△AOB是等邊三角形,得到∠AOB=∠ABO=60°,根據(jù)折疊的性質(zhì)得到∠CED=∠OAB=60°,求得∠OCE=∠DEB,根據(jù)相似三角形的性質(zhì)得到BE=OB﹣OE=6﹣=,設(shè)CE=a,則CA=a,CO=6﹣a,ED=b,則AD=b,DB=6﹣b,于是得到結(jié)論.
過A作AF⊥OB于F,如圖所示:
∵A(3,3),B(6,0),
∴AF=3,OF=3,OB=6,
∴BF=3,
∴OF=BF,
∴AO=AB,
∵tan∠AOB=,
∴∠AOB=60°,
∴△AOB是等邊三角形,
∴∠AOB=∠ABO=60°,
∵將△OAB沿直線CD折疊,使點(diǎn)A恰好落在線段OB上的點(diǎn)E處,
∴∠CED=∠OAB=60°,
∵∠OCE+∠COE=∠OCE+60°=∠CED+∠DEB=60°+∠DEB,
∴∠OCE=∠DEB,
∴△CEO∽△EDB,
∴==,
∵OE=,
∴BE=OB﹣OE=6﹣=,
設(shè)CE=a,則CA=a,CO=6﹣a,ED=b,則AD=b,DB=6﹣b,
則,,
∴6b=30a﹣5ab①,24a=30b﹣5ab②,
②﹣①得:24a﹣6b=30b﹣30a,
∴,
即AC:AD=2:3.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】測量計(jì)算是日常生活中常見的問題,如圖,建筑物BC的屋頂有一根旗桿AB,從地面上D點(diǎn)處觀測旗桿頂點(diǎn)A的仰角為50°,觀測旗桿底部B點(diǎn)的仰角為45°,(可用的參考數(shù)據(jù):sin50°≈0.8,tan50°≈1.2)
(1)若已知CD=20米,求建筑物BC的高度;
(2)若已知旗桿的高度AB=5米,求建筑物BC的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D是BC邊的中點(diǎn),連接AD,分別過點(diǎn)A,C作AE∥BC,CE∥AD交于點(diǎn)E,連接DE,交AC于點(diǎn)O.
(1)求證:四邊形ADCE是矩形;
(2)若AB=10,sin∠COE=,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),已知拋物線經(jīng)過坐標(biāo)原點(diǎn)O和x軸上另一點(diǎn)E,頂點(diǎn)M的坐標(biāo)為(2,4);矩形ABCD的頂點(diǎn)A與點(diǎn)O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3.
(1)求直線y=3與拋物線交點(diǎn)的坐標(biāo);
(2)將矩形ABCD以每秒1個(gè)單位長度的速度從圖⑴所示的位置沿x軸的正方向勻速平行移動(dòng),同時(shí)一動(dòng)點(diǎn)P也以相同的速度從點(diǎn)A出發(fā)向B勻速移動(dòng),設(shè)它們運(yùn)動(dòng)的時(shí)間為t秒(0≤t≤3),直線AB與該拋物線的交點(diǎn)為N(如圖(2)所示).
①當(dāng)時(shí),判斷點(diǎn)P是否在直線ME上,并說明理由;
②設(shè)以P、N、C、D為頂點(diǎn)的多邊形面積為S,試問S是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,AC是弦,直線EF經(jīng)過點(diǎn)C,AD⊥EF于點(diǎn)D,∠DAC=∠BAC.
(1)求證:EF是⊙O的切線;
(2)若⊙O的半徑為2,∠ACD=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,⊙O是△ABC的外接圓,D為弧AC的中點(diǎn),E是BA延長線上一點(diǎn),∠DAE=105°.
(1)求∠CAD的度數(shù);
(2)若⊙O的半徑為4,求弧BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售 A、B 兩種品牌的彩色電視機(jī),A、B 兩種彩電的進(jìn)價(jià)每臺(tái)分別為2000 元、1600元.一 月 份 A、B 兩 種 彩 電 每 臺(tái) 銷 售 價(jià) 分 別 為 2700 元、2100 元,月 利 潤 為 12000元.為了增加利潤,二月份營銷人員提供了兩種銷售策略:
策略一: A 種彩電每臺(tái)降價(jià)100元,B 種彩電每臺(tái)降價(jià)80元,估計(jì)月銷售量分別增長30%、40%;
策略二: A 種彩電每臺(tái)降價(jià) 150 元,B 種彩電每臺(tái)降價(jià) 100 元,估計(jì)月銷售量都增長50%.
根據(jù)以上信息完成下列各題:
(1)求一月份 A、B 兩種彩電的銷售量.
(2)二月份這兩種策略是否能增加利潤?
(3)二月份該商店應(yīng)該采用上述兩種銷售策略中的哪一種,方能使商店所獲得的利潤較多?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,拋物線y=x2﹣(a+1)x+a與x軸交于A、B兩點(diǎn)(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.已知△ABC的面積為6.
(1)求這條拋物線相應(yīng)的函數(shù)表達(dá)式;
(2)在拋物線上是否存在一點(diǎn)P,使得∠POB=∠CBO,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)如圖②,M是拋物線上一點(diǎn),N是射線CA上的一點(diǎn),且M、N兩點(diǎn)均在第二象限內(nèi),A、N是位于直線BM同側(cè)的不同兩點(diǎn).若點(diǎn)M到x軸的距離為d,△MNB的面積為2d,且∠MAN=∠ANB,求點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市欲購進(jìn)一種今年新上市的產(chǎn)品,購進(jìn)價(jià)為20元件,為了調(diào)查這種新產(chǎn)品的銷路,該超市進(jìn)行了試銷售,得知該產(chǎn)品每天的銷售量件與每件的銷售價(jià)元件之間有如下關(guān)系:
請(qǐng)寫出該超市銷售這種產(chǎn)品每天的銷售利潤元與x之間的函數(shù)關(guān)系式,并求出超市能獲取的最大利潤是多少元.
若超市想獲取1500元的利潤求每件的銷售價(jià).
若超市想獲取的利潤不低于1500元,請(qǐng)求出每件的銷售價(jià)X的范圍?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com