【題目】如圖,點C在線段AB上,AC=6cm,MB=10cm,點M,N分別為AC,BC的中點.
(1)求線段BC,MN的長;
(2)若C在線段AB的延長線上,且滿足AC﹣BC=acm,M,N分別是線段AC,BC的中點,請畫出圖形,并用a的式子表示MN的長度.
【答案】
(1)解:∵M是AC的中點,
∴MC= AC=3cm,
∴BC=MB﹣MC=7cm,
又N為BC的中點,
∴CN= BC=3.5cm,
∴MN=MC+NC=6.5cm
(2)解:如圖:
∵M是AC的中點,
∴CM= AC,
∵N是BC的中點,
∴CN= BC,
∴MN=CM﹣CN= AC﹣ BC= (AC﹣BC)= acm
【解析】(1)根據(jù)“點M、N分別是AC、BC的中點”,先求出MC、CN的長度,再利用BC=MB﹣MC,MN=CM+CN即可求出線段BC,MN的長度即可.(2)先畫圖,再根據(jù)線段中點的定義得MC= AC,NC= BC,然后利用MN=MC﹣NC得到MN= acm.
【考點精析】通過靈活運用兩點間的距離,掌握同軸兩點求距離,大減小數(shù)就為之.與軸等距兩個點,間距求法亦如此.平面任意兩個點,橫縱標(biāo)差先求值.差方相加開平方,距離公式要牢記即可以解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D、E、F分別在AB、BC、AC邊上,且BE=CF,BD=CE.
(1)求證:△DEF是等腰三角形;
(2)當(dāng)∠A=40°時,求∠DEF的度數(shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,DC∥AB,DA⊥AB,AD=4cm,DC=5cm,AB=8cm.如果點P由B點出發(fā)沿BC方向向點C勻速運動,同時點Q由A點出發(fā)沿AB方向向點B勻速運動,它們的速度均為1cm/s,當(dāng)P點到達C點時,兩點同時停止運動,連接PQ,設(shè)運動時間為t s,解答下列問題:
(1)當(dāng)t為何值時,P,Q兩點同時停止運動?
(2)設(shè)△PQB的面積為S,當(dāng)t為何值時,S取得最大值,并求出最大值;
(3)當(dāng)△PQB為等腰三角形時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解答題。
(1)計算:﹣22÷(﹣1)2﹣ ×[4﹣(﹣5)2]
(2)化簡:6a2b﹣(﹣3a2b+5ab2)﹣2(5a2b﹣3ab2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用圖象法求方程的解,體現(xiàn)了數(shù)形結(jié)合的方法,它是將方程的解看成兩個函數(shù)圖象交點的橫坐標(biāo).若關(guān)于x的方程x2+a﹣=0(a>0)只有一個整數(shù)解,則a的值等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A(﹣1,﹣3)和點B(3,m),且AB平行于x軸,則點B坐標(biāo)為( 。
A. (3,﹣3) B. (3,3) C. (3,1) D. (3,﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“母親節(jié)”前期,某花店購進康乃馨和玫瑰兩種鮮花,銷售過程中發(fā)現(xiàn)康乃馨比玫瑰銷售量大,店主決定將玫瑰每枝降價1元促銷,降價后30元可購買玫瑰的數(shù)量是原來購買玫瑰數(shù)量的1.5倍.
(1)求降價后每枝玫瑰的售價是多少元?
(2)根據(jù)銷售情況,店主用不多于900元的資金再次購進兩種鮮花共500枝,康乃馨進價為2元/枝,玫瑰進價為1.5元/枝,問至少購進玫瑰多少枝?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com