【題目】紅和小華都想去參加學校組織的演講比賽,但現(xiàn)在名額只有一個,于是小英想出了一個辦法:讓小紅和小華分別轉(zhuǎn)動下圖的甲、乙兩個轉(zhuǎn)盤(轉(zhuǎn)盤甲被二等分、轉(zhuǎn)盤乙被四等分),在兩個轉(zhuǎn)盤都停止轉(zhuǎn)動后,若指針所指的兩個數(shù)字之和為偶數(shù),則小紅去;若指針所指的兩個數(shù)字之和為奇數(shù),則小華去,你認為這個方法公平嗎?請說明理由.

【答案】公平,甲、乙概率相等,理由見解析.

【解析】

畫樹狀圖可列出所有等可能結(jié)果,從中找到和為奇數(shù)與和為奇數(shù)的結(jié)果數(shù),從而計算出各自的概率,據(jù)此可得答案.

解:方法公平,

畫樹狀圖如下:

由樹狀圖知,共有8種等可能結(jié)果,其中和為偶數(shù)的4種結(jié)果,和為奇數(shù)的有4種結(jié)果,

小紅去的概率為,小英去的概率為,

甲、乙概率相等,這個方法公平.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】小田同學學習反比例函數(shù)的圖象和性質(zhì)后,對新函數(shù)的圖象和性質(zhì)進行了探究,以下是她的探究過程:.

第一步:在直角坐標系中,作出函數(shù)的圖象;

第二步:通過列表、描點、連線,作出新函數(shù)的圖象

①列表:

-4

-2

-1

0

1

3

4

5

6

1

1.5

2

3

6

-6

-3

-2

-1.5

②描點:如圖所示.

1)請在圖中,幫助小田同學完成連線的步驟;

2)觀察圖象,發(fā)現(xiàn)函數(shù)與函數(shù)的圖象都是雙曲線,并且形狀也相同,只是位置發(fā)生了改變,由此可知,函數(shù)的圖象可由函數(shù)的圖象平移得到,請寫出函數(shù)的圖象是怎樣平移得到的?

3)若點,在函數(shù)圖象上,且,則 (選填“>”“<”“=”

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)軸上OA兩點的距離為4,一動點PA點出發(fā)按以下規(guī)律跳動:第一次跳動到AO的中點A1處,第二次從A1點跳動到A1O的中點A2處,第三次從A2跳動到A2O的中點A3處按照這樣的規(guī)律,繼續(xù)跳動到點A4A5A6……Ann≥3n是整數(shù))處那么線段A3O的長度為_________,AnA的長度為_________ 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,DBC上,若AD=BD,AB=AC=CD,則∠BAC=_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在平面直角坐標系中,O為坐標原點,A(-5,8)B(3,0).

1)如圖1,求∠ABO的度數(shù);

2)如圖2,點Cy軸的負半軸上,△BOC的面積為,過點CCDABx軸于點D,點P為直線CD上一點,求△PAB的面積;

3)如圖3,在(2)的條件下,當P在第二象限時,過點PAB的垂線交x軸于點E,點Fx軸上一點,連接PF,點GEP延長線上一點,連接OG,若OG=FP,∠EFP+PGO=45°,EF=11,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:四邊形ABCD中,AC為對角線,∠DAC=∠BCA,且ADBC,CDAD于點D

1)如圖1,求證:四邊形ABCD是矩形。

2)如圖2,點E和點F分別為邊AB和邊BC的中點,連接DE、DF分別交AC于點G和點H,連接BG,在不連接其它線段的情況下,請寫出所有面積是FHC面積的2倍的所有三角形。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=﹣x2+x+2x軸于點A.BAB的右側(cè)),與y軸交于點C,D為第一象限拋物線上的動點,則△ACD面積的最大值是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖1,△ABC中,∠BAC=90°,AB=AC,D,EBC上,∠DAE=45°,為了探究BD,DE,CE之間的等量關(guān)系,現(xiàn)將△AECA順時針旋轉(zhuǎn)90°后成△AFB,連接DF,經(jīng)探究,你所得到的BD,DE,CE之間的等量關(guān)系式是 ;(無須證明)

(2)如圖2,在△ABC中,∠BAC=120°,AB=AC,D,EBC上,∠DAE=60°,∠ADE=45°,試仿照(1)的方法,利用圖形的旋轉(zhuǎn)變換,探究BD,DE,CE之間的等量關(guān)系,并證明你的結(jié)論.

      

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)為實數(shù))

1)當時,若= ,則此函數(shù)是一次函數(shù);

2)若它是一個二次函數(shù),假設,那么:

①當時,的增大而減小,請判斷這個命題的真假并說明理由;

②它一定經(jīng)過哪個點?請說明理由.

查看答案和解析>>

同步練習冊答案