【題目】(本題滿分8分,每小題4分)

袋子中裝有2個紅球,1個黃球,它們除顏色外其余都相同。小明和小英做摸球游戲,約定一次游戲規(guī)則是:小英先從袋中任意摸出1個球記下顏色后放回,小明再從袋中摸出1個球記下顏色后放回,如果兩人摸到的球的顏色相同,小英贏,否則小明贏.

1)請用樹狀圖或列表格法表示一次游戲中所有可能出現(xiàn)的結(jié)果;

2)這個游戲規(guī)則對雙方公平嗎?請說明理由.

【答案】

(1)

(2)不公平

【解析】

解:

或列表格如下:

小明小英

紅1

紅2

紅1

紅1紅1

紅1紅2

紅1黃

紅2

紅2紅1

紅2紅2

紅2黃

黃紅1

黃紅2

黃黃

3分

所以,游戲中所有可能出現(xiàn)的結(jié)果有以下9種:紅1紅1,紅1紅2,紅1黃,紅2紅1,

紅2紅2,紅2黃,黃紅1,黃紅2,黃黃,這些結(jié)果出現(xiàn)的可能性是相等的.4分

(2)這個游戲?qū)﹄p方不公平.理由如下:5分

由(1)可知,一次游戲有9種等可能的結(jié)果,其中兩人摸到的球顏色相同的結(jié)果有5種,兩人摸到的球顏色不同的結(jié)果有4種.

P(小英贏)=,P(小明贏)=7分

P(小英贏)P(小明贏), 這個游戲?qū)﹄p方不公平.8分

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某商店需要購進甲、乙兩種商品共160件,其進價和售價如下表:(注:獲利=售價-進價)

(1)若商店計劃銷售完這批商品后能獲利1 100元,請問甲、乙兩種商品應分別購進多少件?

(2)若商店計劃投入資金少于4300元,且銷售完這批商品后獲利多于1260元,請問有哪幾種購貨方案?并指出獲利最大的購貨方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AMN為等腰三角形,點O是底邊MN的中點,腰AN與⊙O相切于點E,ON與⊙O相交于點D

(1)求證:AM與⊙O相切;

(2)若EN=,DN=2.求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD,點EBC邊的中點,DEAC相交于點F,連接BF,下列結(jié)論:①SABF=SADFSCDF=4SCEF;SADF=2SCEFSADF=2SCDF,其中正確的是( 。

A. ①③ B. ②③ C. ①④ D. ②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ADC中,∠C=90°,∠A=30°.點B是線段AC上一點,且AB=40cm,∠DBC=75°.

(1)求點B到AD的距離;

(2)求線段CD的長(結(jié)果用根號表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,DAB的中點,E,F(xiàn)分別是AC,BC上的點(點E不與端點A,C重合),且AE=CF.

(1)求證:△ADE≌△CDF

(2)如圖2連接EF并取EF的中點O,連接DO并延長至點G,使GO=OD,連接DE,DF,GE,GF.求證:四邊形EDFG是正方形.

(3)當點E在什么位置時,四邊形EDFG的面積最。恐苯訉懗鳇cE的位置及四邊形EDFG面積的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是等腰直角三角形,,以為邊向外作等邊三角形,連接于點,交于點,過點于點.下列結(jié)論:①;②;③;④.則正確的結(jié)論是_____.(填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在平面直角坐標系中,△ABC 進行循環(huán)往復的軸對稱或中心對稱變換,若原來點 A 坐標是(a,b),則經(jīng)過第 2012 次變換后所得的 A 點坐標是( )

A. (a,b) B. (a,﹣b) C. (﹣a,b) D. (﹣a,﹣b)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店如果將進貨價為8元的商品按每件10元售出,每天可銷售200件,現(xiàn)在采用提高售價,減少進貨量的方法增加利潤,已知這種商品每漲價0.5元,其銷量就減少10件.

1)要使每天獲得利潤700元,且進貨量盡可能減少,請你幫忙確定售價;

2)問售價定在多少時能使每天獲得的利潤最多?并求出最大利潤.

查看答案和解析>>

同步練習冊答案