【題目】證明一個四邊形是正方形,使用次數(shù)最少的方法對折,則應該對折( 。
A.1次B.2次C.3次D.4次
科目:初中數(shù)學 來源: 題型:
【題目】旅行社組織了甲、乙兩個旅游團到游樂場游玩,兩團總報名人數(shù)為120人,其中甲團人數(shù)不超過50人,游樂場規(guī)定一次性購票50人以上可享受團隊票.門票價格如下:
旅行社經過計算后發(fā)現(xiàn),如果甲、乙兩團合并成一個團隊購票可以比分開購票節(jié)約300元.
(1)求甲、乙兩團的報名人數(shù);
(2)當天到達游樂場后發(fā)現(xiàn)團隊票價格作了臨時調整,團隊票A每張降價a元,團隊票B每張降價2a元,同時乙團隊因故缺席了30人,此時甲、乙兩團合并成一個團隊購票可以比分開購票節(jié)約225元,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AD= AB,∠BAD的平分線交BC于點E,DH⊥AE于點H,連接BH并延長交CD于點F,連接DE交BF于點O,下列結論:
①∠AED=∠CED;
②OE=OD;
③BH=HF;
④BC﹣CF=2HE;
⑤AB=HF.
其中正確的有( )
A.①②③④⑤
B.①②③④
C.①③④⑤
D.①②③⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C是⊙O上一點,過點C的直線交AB的延長線于點D,AE⊥DC,垂足為E,F(xiàn)是AE與⊙O的交點,AC平分∠BAE.
(1)求證:DE是⊙O的切線;
(2)若AE=6,∠D=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】知識的遷移與應用
問題一:甲、乙兩車分別從相距180km的 A、B兩地出發(fā),甲車速度為36 km/h,乙車速度為24km/h,兩車同時出發(fā),相向而行, 后兩車相距120 km?
問題二:將線段彎曲后可視作鐘表的一部分,如圖,在一個圓形時鐘的表面上,OA表示時針,OB表示分針(O為兩針的旋轉中心).下午3點時,OA與OB成直角.
(1)3:40時,時針與分針所成的角度 ;
(2)分針每分鐘轉過的角度為 ,時針每分鐘轉過的角度為 ;
(3)在下午3點至4點之間,從下午3點開始,經過多少分鐘,時針與分針成60°角?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC與BD交于點O,AC=6,BD=8.動點E從點B出發(fā),沿著B﹣A﹣D在菱形ABCD的邊上運動,運動到點D停止.點F是點E關于BD的對稱點,EF交BD于點P,若BP=x,△OEF的面積為y,則y與x之間的函數(shù)圖象大致為( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若一個四邊形的一條對角線把四邊形分成兩個等腰三角形,且其中一個等腰三角形的底角是另一個等腰三角形底角的2倍,我們把這條對角線叫做這個四邊形的黃金線,這個四邊形叫做黃金四邊形.
(1)如圖1,在四邊形ABCD中,AB=AD=DC,對角線AC,BD都是黃金線,且AB<AC,CD<BD,求四邊形ABCD各個內角的度數(shù);
(2)如圖2,點B是弧AC的中點,請在⊙O上找出所有的點D,使四邊形ABCD的對角線AC是黃金線(要求:保留作圖痕跡);
(3)在黃金四邊形ABCD中,AB=BC=CD,∠BAC=30°,求∠BAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABOD的周長為4,點P到x軸、y軸的距離與點A到x軸、y軸的距離分別相等.
(1)請你寫出正方形ABOD各頂點的坐標;
(2)求點P的坐標及三角形PDO的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程2x2+4x+k-1=0有實數(shù)根,k為正整數(shù).
(1)求k的值;
(2)當此方程有兩個非零的整數(shù)根時,將關于x的二次函數(shù)y=2x2+4x+k-1的圖象向下平移8個單位,求平移后的圖象的解析式;
(3) 在(2)的條件下,將平移后的二次函數(shù)的圖象在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,得到一個新的圖象.請你結合這個新的圖像回答:當直線y=0.5x+b (b<k)與此圖象有兩個公共點時,b的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com