【題目】如圖,在平面直角坐標系中,直線y=﹣2x+10x軸,y軸相交于A,B兩點,點C的坐標是(8,4),連接AC,BC

1)求過O,A,C三點的拋物線的解析式,并判斷△ABC的形狀;

2)動點P從點O出發(fā),沿OB以每秒2個單位長度的速度向點B運動;同時,動點Q從點B出發(fā),沿BC以每秒1個單位長度的速度向點C運動.規(guī)定其中一個動點到達端點時,另一個動點也隨之停止運動.設運動時間為t秒,當t為何值時,PA=QA

3)在拋物線的對稱軸上,是否存在點M,使以AB,M為頂點的三角形是等腰三角形?若存在,求出點M的坐標;若不存在,請說明理由.

【答案】1,直角三角形;(2;(3M1,),M2,),M3),M4,).

【解析】

(1)先確定出點A,B坐標,再用待定系數(shù)法求出拋物線解析式;用勾股定理逆定理證出AC2+BC2=AB2,則△ABC是直角三角形;

(2)根據(jù)運動表示出OP=2t,CQ=10﹣t,由已知條件證明Rt△AOP≌Rt△ACQ,得到OP=CQ即可;

(3)分當BM=BA,AM=AB,MA=MB三種情況分類討論,由兩點間的距離公式計算即可,

解:(1)∵直線y=﹣2x+10與x軸,y軸相交于A,B兩點,

∴A(5,0),B(0,10),

∵拋物線過原點,

∴設拋物線解析式為y=ax2+bx,

∵拋物線過點A(5,0),C(8,4),

,∴,

∴拋物線解析式為y=x2x,

∵A(5,0),B(0,10),C(8,4),

∴AB2=52+102=125,BC2=82+(10﹣4)2=100,AC2=42+(8﹣5)2=25,

∴AC2+BC2=AB2,

∴△ABC是直角三角形.

(2)如圖1,

當P,Q運動t秒,即OP=2t,CQ=10﹣t時,

由(1)得,AC=OA,∠ACQ=∠AOP=90°,

在Rt△AOP和Rt△ACQ中,

AC=OA,PA=QA,

∴Rt△AOP≌Rt△ACQ,

∴OP=CQ,

∴2t=10﹣t,

∴t=,

∴當運動時間為時,PA=QA;

(3)存在,

∵y=x2x,

∴拋物線的對稱軸為x=,

∵A(5,0),B(0,10),

∴AB=5

設點M(,m),

①若BM=BA時,

∴(2+(m﹣10)2=125,

∴m1=,m2=,

∴M1),M2),

②若AM=AB時,

∴(2+m2=125,

∴m3=,m4=﹣,

∴M3,),M4,﹣),

③若MA=MB時,

∴(﹣5)2+m2=(2+(10﹣m)2

∴m=5,

∴M(,5),此時點M恰好是線段AB的中點,構(gòu)不成三角形,舍去,

∴點M的坐標為:M1,),M2,),M3,),M4,﹣),

“點睛”此題是二次函數(shù)綜合題,主要考查了待定系數(shù)法求函數(shù)解析式,三角形的全等的性質(zhì)和判定,等腰三角形的性質(zhì),解本題的關(guān)鍵是分情況討論,也是本題的難點.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在,P從點B出發(fā),沿折線運動,當它到達點A時停止,設點P運動的路程為Q是射線CA上一點,,連接

求出,x的函數(shù)關(guān)系式,并注明x的取值范圍;

補全表格中的值;

x

1

2

3

4

6

______

______

______

______

______

以表中各組對應值作為點的坐標,在直角坐標系內(nèi)描出相應的點,并在x的取值范圍內(nèi)畫出的函數(shù)圖象:

在直角坐標系內(nèi)直接畫出函數(shù)圖象,結(jié)合的函數(shù)圖象,求出當時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了弘揚我國古代數(shù)學發(fā)展的偉大成就,某校九年級進行了一次數(shù)學知識競賽,并設立了以我國古代數(shù)學家名字命名的四個獎項:祖沖之獎劉徽獎、趙爽獎楊輝獎,根據(jù)獲獎情況繪制成如圖1和圖2所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,并得到了獲祖沖之獎的學生成績統(tǒng)計表:

祖沖之獎的學生成績統(tǒng)計表:

分數(shù)

80

85

90

95

人數(shù)

4

2

10

4

根據(jù)圖表中的信息,解答下列問題:

這次獲得劉徽獎的人數(shù)是多少,并將條形統(tǒng)計圖補充完整;

獲得祖沖之獎的學生成績的中位數(shù)是多少分,眾數(shù)是多少分;

在這次數(shù)學知識竟賽中有這樣一道題:一個不透明的盒子里有完全相同的三個小球,球上分別標有數(shù)字“2”,隨機摸出一個小球,把小球上的數(shù)字記為x放回后再隨機摸出一個小球,把小球上的數(shù)字記為y,把x作為橫坐標,把y作為縱坐標,記作點用列表法或樹狀圖法求這個點在第二象限的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,ABC中,∠B=90°,AB=6cm,BC=8cm.

(1)點P從點A開始沿AB邊向B以1cm/s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動.如果P,Q分別從A,B同時出發(fā),經(jīng)過幾秒,使PBQ的面積等于8cm2?

(2)點P從點A開始沿AB邊向B以1cm/s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動.如果P,Q分別從A,B同時出發(fā),線段PQ能否將ABC分成面積相等的兩部分?若能,求出運動時間;若不能說明理由.

(3)若P點沿射線AB方向從A點出發(fā)以1cm/s的速度移動,點Q沿射線CB方向從C點出發(fā)以2cm/s的速度移動,P,Q同時出發(fā),問幾秒后,PBQ的面積為1?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某校九年級學生的身高情況,隨機抽取部分學生的身高進行調(diào)查,利用所得數(shù)據(jù)繪成如圖統(tǒng)計圖表:

頻數(shù)分布表

身高分組

頻數(shù)

百分比

x155

5

10%

155≤x160

a

20%

160≤x165

15

30%

165≤x170

14

b

x≥170

6

12%

總計

100%

(1)填空:a=____,b=____;

(2)補全頻數(shù)分布直方圖;

(3)該校九年級共有600名學生,估計身高不低于165cm的學生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c的對稱軸是x=﹣1,且過點(,0).有下列結(jié)論:①abc>0;②25a﹣10b+4c=0;③a﹣2b+4c=0;④a﹣b≥m(am﹣b);⑤3b+2c>0;其中所有正確的結(jié)論是_____(填寫正確結(jié)論的序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=﹣x2+bx+c經(jīng)過點A、B、C,已知A(﹣1,0),C(0,3).

(1)求拋物線的解析式;

(2)如圖1,P為線段BC上一點,過點Py軸平行線,交拋物線于點D,當△BDC的面積最大時,求點P的坐標;

(3)如圖2,拋物線頂點為E,EF⊥x軸于F點,M(m,0)是x軸上一動點,N是線段EF上一點,若∠MNC=90°,請指出實數(shù)m的變化范圍,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點C為直徑BA的延長線上一點,CD切⊙O于點D,

(Ⅰ)如圖①,若∠CDA=26°,求∠DAB的度數(shù);

(Ⅱ)如圖②,過點B作⊙O的切線交CD的延長線于點E,若⊙O的半徑為3,BC=10,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的方程m x2-(m+2)x+2=0(m≠0).

(1)求證:無論m為何值時,這個方程總有兩個實數(shù)根;

(2)若方程的兩個實數(shù)根都是整數(shù),求正整數(shù)m的值.

查看答案和解析>>

同步練習冊答案