【題目】把兩塊全等的直角三角形ABC和DEF疊放在一起,使三角板DEF的銳角頂點(diǎn)D與三角板ABC的斜邊中點(diǎn)O重合,其中ABC=DEF=90°,C=F=45°,AB=DE=4,把三角板ABC固定不動(dòng),讓三角板DEF繞點(diǎn)O旋轉(zhuǎn),設(shè)射線DE與射線AB相交于點(diǎn)P,射線DF與線段BC相交于點(diǎn)Q.

(1)如圖1,當(dāng)射線DF經(jīng)過點(diǎn)B,即點(diǎn)Q與點(diǎn)B重合時(shí),易證APD∽△CDQ.此時(shí),APCQ=

(2)將三角板DEF由圖1所示的位置繞點(diǎn)O沿逆時(shí)針方向旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α.其中0°<α<90°,問APCQ的值是否改變?說(shuō)明你的理由;

(3)在(2)的條件下,設(shè)CQ=x,兩塊三角板重疊面積為y,求y與x的函數(shù)關(guān)系式.(圖2,圖3供解題用)

【答案】(1)8.(2)APCQ的值不會(huì)改變.(3)當(dāng)2<x<4時(shí),y=8﹣x﹣.當(dāng)0<x≤2時(shí),y=4﹣x﹣(或y=).

【解析】

試題分析:(1)可通過證APD∽△CDQ來(lái)求解.

(2)不會(huì)改變,關(guān)鍵是還是證APD∽△CDQ,已知了一組45°角,關(guān)鍵是證(1)中的APD=QDC,由于圖2由圖1旋轉(zhuǎn)而得,根據(jù)旋轉(zhuǎn)的性質(zhì)可設(shè)旋轉(zhuǎn)角為α,那么APD=90°﹣α,CDQ=90°﹣α,因此兩角相等.由此可證得兩三角形相似.因此結(jié)論不變.

(3)本題分類兩種情況進(jìn)行討論:①當(dāng)0°<α<45°時(shí)②當(dāng)45°≤α<90°時(shí).

解:(1)∵∠A=C=45°,APD=QDC=90°,

∴△APD∽△CDQ

AP:CD=AD:CQ.

即AP×CQ=AD×CD,

AB=BC=4

斜邊中點(diǎn)為O,

AP=PD=2

AP×CQ=2×4=8;

故答案為:8.

(2)APCQ的值不會(huì)改變.

理由如下:

APDCDQ中,A=C=45°,

APD=180°﹣45°﹣(45°+α)=90°﹣α,

CDQ=90°﹣α,

∴∠APD=CDQ

∴△APD∽△CDQ

APCQ=ADCD=AD2=(AC)2=8.

(3)情形1:當(dāng)0°<α<45°時(shí),2<CQ<4,即2<x<4,

此時(shí)兩三角板重疊部分為四邊形DPBQ,過D作DGAP于G,DNBC于N,

DG=DN=2

由(2)知:APCQ=8得AP=

于是y=ABBC﹣CQDN﹣APDG

=8﹣x﹣(2<x<4)

情形2:當(dāng)45°≤α<90°時(shí),0<CQ≤2時(shí),即0<x≤2,此時(shí)兩三角板重疊部分為DMQ

由于AP=,PB=﹣4,易證:PBM∽△DNM,

解得

MQ=4﹣BM﹣CQ=4﹣x﹣

于是y=MQDN=4﹣x﹣(0<x≤2).

綜上所述,當(dāng)2<x<4時(shí),y=8﹣x﹣

當(dāng)0<x≤2時(shí),y=4﹣x﹣(或y=).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某氣象局預(yù)報(bào)稱:“明天本市的降水概率為70%”.這句話指的是( )

A. 明天本市70%的時(shí)間下雨,30%的時(shí)間不下雨

B. 明天本市70%的地方下雨,30%的地方不下雨

C. 明天本市一定下雨

D. 明天本市下雨的可能性是70%

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l所在的直線的解析式為y=x,點(diǎn)B坐標(biāo)為(10,0)過B做BC直線l,垂足為C,點(diǎn)P從原點(diǎn)出發(fā)沿x軸方向向點(diǎn)B運(yùn)動(dòng),速度為1單位/s,同時(shí)點(diǎn)Q從點(diǎn)B出發(fā)沿B→C→原點(diǎn)方向運(yùn)動(dòng),速度為2個(gè)單位/s,當(dāng)一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).

(1)OC= ,BC= ;

(2)當(dāng)t=5(s)時(shí),試在直線PQ上確定一點(diǎn)M,使BCM的周長(zhǎng)最小,并求出該最小值;

(3)設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),PBQ的面積為y,當(dāng)PBQ存在時(shí),求y與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCD中,點(diǎn)E、F分別在AB、CD上,且AE=CF.

(1)求證:ADE≌△CBF;

(2)若DF=BF,求證:四邊形DEBF為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三角形的三邊長(zhǎng)分別是m2+1, 2 m, m2-1(n為正整數(shù)),則最大角等于_______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】油箱中存油20升,油從油箱中均勻流出,流速為0.2升/分鐘,則油箱中剩余油量 Q(升)與流出時(shí)間t(分鐘)的函數(shù)關(guān)系是( 。
A.Q=0.2t
B.Q=20﹣0.2t
C.t=0.2Q
D.t=20﹣0.2Q

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列句子中不是命題的是( )

A. 兩直線平行,同位角相等 B. 4開平方

C. |a|=|b|,則a2=b2 D. 同角的補(bǔ)角相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,A=C=90°,BE平分ABC,DF平分ADC,則BE與DF有何位置關(guān)系?試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一個(gè)n位數(shù)中各數(shù)字的n次冪之和等于該數(shù)本身,這個(gè)數(shù)叫做“自戀數(shù)”,下面四個(gè)數(shù)中是自戀數(shù)的是 ( )

A. 66 B. 153 C. 225 D. 250

查看答案和解析>>

同步練習(xí)冊(cè)答案