【題目】如圖,矩形ABCD中,E為BC的中點(diǎn),將△ABE沿直線AE折疊時(shí)點(diǎn)B落在點(diǎn)F處,連接FC,若∠DAF=18°,則∠DCF=_____度.
【答案】36。
【解析】
由折疊的性質(zhì)得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,求出∠BAE=∠FAE=36°,由直角三角形的性質(zhì)得出∠AEF=∠AEB=54°,求出∠CEF=72°,求出FE=CE,由等腰三角形的性質(zhì)求出∠ECF=54°,即可得出∠DCF的度數(shù).
解:∵四邊形ABCD是矩形,
∴∠BAD=∠B=∠BCD=90°,
由折疊的性質(zhì)得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,
∵∠DAF=18°,
∴∠BAE=∠FAE=×(90°﹣18°)=36°,
∴∠AEF=∠AEB=90°﹣36°=54°,
∴∠CEF=180°﹣2×54°=72°,
∵E為BC的中點(diǎn),
∴BE=CE,
∴FE=CE,
∴∠ECF=×(180°﹣72°)=54°,
∴∠DCF=90°﹣∠ECF=36°.
故答案為36.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,AC為弦,點(diǎn)D為中點(diǎn),過點(diǎn)D作DE⊥直線AC,垂足為E,交AB的延長(zhǎng)線于點(diǎn)F
(1)求證:EF是⊙O的切線;
(2)若EF=4,sin∠F=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一個(gè)矩形紙片放置在平面直角坐標(biāo)系中,點(diǎn)點(diǎn)點(diǎn)是邊上的一點(diǎn)(點(diǎn)不與點(diǎn)重合),沿著折疊該紙片,得點(diǎn)的對(duì)應(yīng)點(diǎn).
(1)如圖①,當(dāng)點(diǎn)落在邊上時(shí),求點(diǎn)的坐標(biāo);
(2)若點(diǎn)落在邊的上方,與分別與邊交于點(diǎn).
①如圖②,當(dāng)時(shí),求點(diǎn)的坐標(biāo);
②當(dāng)時(shí),求點(diǎn)的坐標(biāo)(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,對(duì)角線AC,BD交于點(diǎn)O,OA=OB,過點(diǎn)B作BE⊥AC于點(diǎn)E.
(1)求證:ABCD是矩形;
(2)若AD=,cos∠ABE=,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角△ABC中,∠ACB=90點(diǎn)P在線段BC上,延長(zhǎng)BC至點(diǎn)Q,使得CQ=CP,連接AP,AQ.過點(diǎn)B作BD⊥AQ于點(diǎn)D,交AP于點(diǎn)E,交AC于點(diǎn)F.K是線段AD上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A,D不重合),過點(diǎn)K作GN⊥AP于點(diǎn)H,交AB于點(diǎn)G,交AC于點(diǎn)M,交FD的延長(zhǎng)線于點(diǎn)N.
(1)依題意補(bǔ)全圖1;
(2)求證:NM=NF;
(3)若AM=CP,用等式表示線段AE,GN與BN之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)的圖像與一次函數(shù)的圖像交于兩點(diǎn),.
(1)求反比例函數(shù)與一次函數(shù)的函數(shù)表達(dá)式;
(2)在反比例函數(shù)的圖像上找點(diǎn),使得點(diǎn)構(gòu)成以為底的等腰三角形,請(qǐng)求出所有滿足條件的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線交軸于點(diǎn)頂點(diǎn)為軸,交拋物線于點(diǎn)已知該拋物線的對(duì)稱軸為直線.
(1)求的值和點(diǎn)的坐標(biāo).
(2)將拋物線向下平移個(gè)單位,使平移后得到的拋物線頂點(diǎn)落在的內(nèi)部(不包括的邊界),則的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】黨的十八大以來,全國各地認(rèn)真貫徹精準(zhǔn)扶貧方略,扶貧工作力度、深度和精準(zhǔn)度都達(dá)到了新的水平,為2020年全面建成小康社會(huì)的戰(zhàn)略目標(biāo)打下了堅(jiān)實(shí)基礎(chǔ).以下是根據(jù)近幾年中國農(nóng)村貧困人口數(shù)量(單位:萬人)及分布情況繪制的統(tǒng)計(jì)圖表的一部分.
年份 人數(shù) 地區(qū) | 2017 | 2018 | 2019 |
東部 | 300 | 147 | 47 |
中部 | 1112 | 181 | |
西部 | 1634 | 916 | 323 |
(以上數(shù)據(jù)來源于國家統(tǒng)計(jì)局)
根據(jù)統(tǒng)計(jì)圖表提供的信息,下面推斷不正確的是( 。
A.2018年中部地區(qū)農(nóng)村貧困人口為597萬人
B.2017﹣2019年,農(nóng)村貧困人口數(shù)量都是東部最少
C.2016﹣2019年,農(nóng)村貧困人口減少數(shù)量逐年增多
D.2017﹣2019年,雖然西部農(nóng)村貧困人口減少數(shù)量最多,但是相對(duì)于東、中部地區(qū),它的降低率最低
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國務(wù)院發(fā)布的《全民科學(xué)素質(zhì)行動(dòng)計(jì)劃綱要實(shí)施方案(2016-2020年)》指出:公民科學(xué)素質(zhì)是實(shí)施創(chuàng)新驅(qū)動(dòng)發(fā)展戰(zhàn)略的基礎(chǔ),是國家綜合國力的體現(xiàn).《方案》明確提出,2020年要將我國公民科學(xué)素質(zhì)的數(shù)值提升到10%以上.為了解我國公民科學(xué)素質(zhì)水平及發(fā)展?fàn)顩r,中國科協(xié)等單位已多次組織了全國范圍的調(diào)查,以下是根據(jù)調(diào)查結(jié)果整理得到的部分信息.注:科學(xué)素質(zhì)的數(shù)值是指具備一定科學(xué)素質(zhì)的公民人數(shù)占公民總數(shù)的百分比.
.2015和2018年我國各直轄市公民科學(xué)素質(zhì)發(fā)展?fàn)顩r統(tǒng)計(jì)圖如下:
b.2015年和2018年我國公民科學(xué)素質(zhì)發(fā)展?fàn)顩r按性別分類統(tǒng)計(jì)如下:
2015年 | 2018年 | |
男 | ||
女 |
c.2001年以來我國公民科學(xué)素質(zhì)水平發(fā)展統(tǒng)計(jì)圖如下:
根據(jù)以上信息,回答下列問題:
(1)在我國四個(gè)直轄市中,從2015年到2018年,公民科學(xué)素質(zhì)水平增幅最大的城市是________,公民科學(xué)素質(zhì)水平增速最快的城市是_________.注:科學(xué)素質(zhì)水平增幅=2018年科學(xué)素質(zhì)的數(shù)值一2015年科學(xué)素質(zhì)的數(shù)值;科學(xué)素質(zhì)水平增速=(2018年科學(xué)素質(zhì)的數(shù)值一2015年科學(xué)素質(zhì)的數(shù)值)÷2015年科學(xué)素質(zhì)的數(shù)值.
(2)已知在2015年的調(diào)查樣本中,男女公民的比例約為1:1,則2015年我國公民的科學(xué)素質(zhì)水平為______%(結(jié)果保留一位小數(shù));由計(jì)算可知.在2018年的調(diào)查樣本中.男性公民人數(shù)_____女性公民人數(shù)(填“多于”、“等于”或“少于”).
(3)根據(jù)截至2018年的調(diào)查數(shù)據(jù)推斷,你認(rèn)為“2020年我國公民科學(xué)素質(zhì)提升到10%以上”的目標(biāo)能夠?qū)崿F(xiàn)嗎?請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com