【題目】如圖,點P是正方形ABCD的對角線BD上一點(點P不與點B、D重合),PE⊥BC于點E,PF⊥CD于點F,連接EF給出下列五個結(jié)論:①AP=EF;②AP⊥EF;③僅有當∠DAP=45°或67.5°時,△APD是等腰三角形;④∠PFE=∠BAP:⑤PD=EC.其中有正確有( )個.
A. 2B. 3C. 4D. 5
【答案】D
【解析】
過P作PG⊥AB于點G,根據(jù)正方形對角線的性質(zhì)及題中的已知條件,證明△AGP≌△FPE后即可證明①AP=EF;④∠PFE=∠BAP;在此基礎(chǔ)上,根據(jù)正方形的對角線平分對角的性質(zhì),在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,求得DP=EC,得出⑤正確,即可得出結(jié)論.
過P作PG⊥AB于點G,如圖所示:
∵點P是正方形ABCD的對角線BD上一點,
∴GP=EP,
在△GPB中,∠GBP=45°,
∴∠GPB=45°,
∴GB=GP,
同理:PE=BE,
∵AB=BC=GF,
∴AG=AB-GB,FP=GF-GP=AB-GB,
∴AG=PF,
在△AGP和△FPE中,
,
∴△AGP≌△FPE(SAS),
∴AP=EF,①正確,∠PFE=∠GAP,
∴∠PFE=∠BAP,④正確;
延長AP到EF上于一點H,
∴∠PAG=∠PFH,
∵∠APG=∠FPH,
∴∠PHF=∠PGA=90°,
∴AP⊥EF,②正確,
∵點P是正方形ABCD的對角線BD上任意一點,∠ADP=45°,
∴當∠PAD=45°或67.5°時,△APD是等腰三角形,
除此之外,△APD不是等腰三角形,故③正確.
∵GF∥BC,
∴∠DPF=∠DBC,
又∵∠DPF=∠DBC=45°,
∴∠PDF=∠DPF=45°,
∴PF=EC,
∴在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,
∴DP=EC,
即PD=EC,⑤正確.
∴其中正確結(jié)論的序號是①②③④⑤,共有5個.
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,將一副三角板的直角重合放置,其中∠A=30°,∠CDE=45°.
(1)如圖1,求∠EFB的度數(shù);
(2)若三角板ACB的位置保持不動,將三角板CDE繞其直角頂點C順時針方向旋轉(zhuǎn).
①當旋轉(zhuǎn)至如圖2所示位置時,恰好CD∥AB,則∠ECB的度數(shù)為 ;
②若將三角板CDE繼續(xù)繞點C旋轉(zhuǎn),直至回到圖1位置.在這一過程中,是否還會存在△CDE其中一邊與AB平行?如果存在,請你畫出示意圖,并直接寫出相應(yīng)的∠ECB的大小;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是某同學對多項式(x2-4x+2)(x2-4x+6)+4進行因式分解的過程.
解:設(shè)x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
=y2+8y+16 (第二步)
=(y+4)2(第三步)
=(x2-4x+4)2(第四步)
回答下列問題:
(1)該同學第二步到第三步運用了因式分解的_______.
A.提取公因式 |
B.平方差公式 |
C.兩數(shù)和的完全平方公式 |
D.兩數(shù)差的完全平方公式 |
(2)該同學因式分解的結(jié)果是否徹底?________.(填“徹底”或“不徹底”)若不徹底,請直接寫出因式分解的最后結(jié)果_________ .
(3)請你模仿以上方法嘗試對多項式(x2-2x)(x2-2x+2)+1進行因式分解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩同學騎自行車從A地沿同一條路到B地,已知乙比甲先出發(fā).他們離出發(fā)地的距離s/km和騎行時間t/h之間的函數(shù)關(guān)系如圖所示.根據(jù)圖象信息,以下說法錯誤的是( )
A.他們都騎了20 km
B.兩人在各自出發(fā)后半小時內(nèi)的速度相同
C.甲和乙兩人同時到達目的地
D.相遇后,甲的速度大于乙的速度
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的對角線相交于點0,AC=2,BD=.將菱形按如圖方式折疊,使點B與點O重合,折痕為EF,則五邊形AEFCD的面積是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如下,則一次函數(shù)y=ax﹣2b與反比例函數(shù)y= 在同一平面直角坐標系中的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣2,與x軸的一個交點在(﹣3,0)和(﹣4,0)之間,其部分圖象如圖所示,則下列結(jié)論:①4a﹣b=0;②c<0;③﹣3a+c>0;④4a﹣2b>at2+bt(t為實數(shù));⑤點(﹣ ,y1),(﹣ ,y2),(﹣ ,y3)是該拋物線上的點,則y1<y2<y3 , 正確的個數(shù)有( )
A.4個
B.3個
C.2個
D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=ax+b交x軸于點A,交y軸于點B,且a,b滿足a=+4,直線y=kx﹣4k過定點C,點D為直線y=kx﹣4k上一點,∠DAB=45°.
(1)a= ,b= ,C坐標為 ;
(2)如圖1,k=﹣1時,求點D的坐標;
(3)如圖2,在(2)的條件下,點M是直線y=kx﹣4k上一點,連接AM,將AM繞A順時針旋轉(zhuǎn)90°得AQ,OQ最小值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形網(wǎng)格中,每個小正方形的邊長均為1個單位長度,△ABC三個頂點的位置如圖所示,現(xiàn)將△ABC平移,使點A移動到點A',點B、C的對應(yīng)點分別是點B'、C'.
(1)△ABC的面積是 ;
(2)畫出平移后的△A'B'C';
(3)若連接AA'、CC′,這兩條線段的關(guān)系是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com