【題目】計算
(1)(﹣2)3+( )﹣2×22﹣(π﹣2)0
(2)5x2y÷(﹣ xy)3xy2 .
【答案】
(1)解:(﹣2)3+( )﹣2×22﹣(π﹣2)0
=﹣8+ ×4﹣0
=﹣8+4×4﹣0
=8
(2)解:5x2y÷(﹣ xy)3xy2
=(5 )X2﹣1y1﹣13xy2
=﹣10x3xy2
=﹣30x2y2
【解析】(1)先算乘方,再算加減,利用公式:(a)﹣p= (a≠0);a0=1(a≠0)(2)單項式與單項式的乘除混合運算,按從左向右的順序進行計算,運算時注意符號.
【考點精析】認真審題,首先需要了解零指數(shù)冪法則(零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù))),還要掌握整數(shù)指數(shù)冪的運算性質(zhì)(aman=am+n(m、n是正整數(shù));(am)n=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)))的相關(guān)知識才是答題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△OAB如圖所示放置在平面直角坐標系中,直角邊OA與x軸重合,∠OAB=90°,OA=4,AB=2,把Rt△OAB繞點O逆時針旋轉(zhuǎn)90°,點B旋轉(zhuǎn)到點C的位置,一條拋物線正好經(jīng)過點O,C,A三點.
(1)求該拋物線的解析式;
(2)在x軸上方的拋物線上有一動點P,過點P作x軸的平行線交拋物線于點M,分別過點P,點M作x軸的垂線,交x軸于E,F(xiàn)兩點,問:四邊形PEFM的周長是否有最大值?如果有,請求出最值,并寫出解答過程;如果沒有,請說明理由.
(3)如果x軸上有一動點H,在拋物線上是否存在點N,使O(原點)、C、H、N四點構(gòu)成以O(shè)C為一邊的平行四邊形?若存在,求出N點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小剛進行賽跑訓(xùn)練,他們選擇了一個土坡,按同一路線同時出發(fā),從坡腳跑到坡頂再原路返回坡腳.他們倆上坡的平均速度不同,下坡的平均速度則是各自上坡平均速度的1. 5倍.設(shè)兩人出發(fā)x min后距出發(fā)點的距離為y m.圖中折線段OBA表示小明在整個訓(xùn)練中y與x的函數(shù)關(guān)系,其中點A在x軸上,點B坐標為(2,480).
(1)點B所表示的實際意義是 ;
(2)求出AB所在直線的函數(shù)關(guān)系式;
(3)如果小剛上坡平均速度是小明上坡平均速度的一半,那么兩人出發(fā)后多長時間第一次相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x一元二次方程x2+mx+n=0.
(1)當(dāng)m=n+2時,利用根的判別式判斷方程根的情況.
(2)若方程有實數(shù)根,寫出一組滿足條件的m,n的值,并求此時方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明同學(xué)在解一元二次方程時,他是這樣做的:
解一元二次方程
3x2﹣8x(x﹣2)=0…第一步
3x﹣8x﹣2=0…第二步
﹣5x﹣2=0…第三步
﹣5x=2…第四步
x=﹣…第五步
(1)小明的解法從第 步開始出現(xiàn)錯誤;此題的正確結(jié)果是 .
(2)用因式分解法解方程:x(2x﹣1)=3(2x﹣1).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( 。
A. 相似三角形一定全等B. 不相似的三角形不一定全等
C. 全等三角形不一定是相似三角形D. 全等三角形一定是相似三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=k1x+b1與反比例函數(shù)y=的圖象及坐標軸依次相交于A、B、C、D四點,且點A坐標為(﹣3,),點B坐標為(1,n).
(1)求反比例函數(shù)及一次函數(shù)的解析式;
(2)求證:AC=BD;
(3)若將一次函數(shù)的圖象上下平移若干個單位后得到y(tǒng)=k1x+n,其與反比例函數(shù)圖象及兩坐標軸的交點仍然依次為A、B、C、D.(2)中的結(jié)論還成立嗎?請寫出理由,對于任意k<0的直線y=kx+b.(2)中的結(jié)論還成立嗎?(請直接寫出結(jié)論)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com