【題目】E、F、M、N分別是正方形ABCD四條邊上的點(diǎn),AE=BF=CM=DN,四邊形EFMN是什么圖形?證明你的結(jié)論.
【答案】四邊形EFMN是正方形.
【解析】
應(yīng)該是正方形.可通過證明三角形AEN,DNM,MCF,FBE全等,先得出四邊形ENMF是菱形,再證明四邊形EFMN中一個(gè)內(nèi)角為90°,從而得出四邊形EFMN是正方形的結(jié)論.
解:四邊形EFMN是正方形.
證明:∵AE=BF=CM=DN,
∴AN=DM=CF=BE.
∵∠A=∠B=∠C=∠D=90°,
∴△AEN≌△DMN≌△CFM≌△BEF.
∴EF=EN=NM=MF,∠ENA=∠DMN.
∴四邊形EFMN是菱形.
∵∠ENA=∠DMN,∠DMN+∠DNM=90°,
∴∠ENA+∠DNM=90°.
∴∠ENM=90°.
∴四邊形EFMN是正方形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AE=CF,∠AFD=∠CEB,那么添加下列一個(gè)條件后,仍無法判定△ADF≌△CBE的是( )
A. ∠A=∠C B. AD∥BC C. BE=DF D. AD=CB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形在平面直角坐標(biāo)系中, ,,把矩形沿直線對折使點(diǎn)落在點(diǎn)處,直線與的交點(diǎn)分別為,點(diǎn)在軸上,點(diǎn)在坐標(biāo)平面內(nèi),若四邊形是菱形,則菱形的面積是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為4的正方形紙片沿折疊,點(diǎn)落在邊上的點(diǎn)處,點(diǎn)與點(diǎn)重合, 與交于點(diǎn),取的中點(diǎn),連接,則的周長最小值是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,點(diǎn)E、F分別在AB、CD上,且AE=CF.
(1)求證:△ADE≌△CBF;
(2)若DF=BF,求證:四邊形DEBF為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在長方形紙片ABCD中,AB=m,AD=n,將兩張邊長分別為6和4的正方形紙片按圖1,圖2兩種方式放置(圖1,圖2中兩張正方形紙片均有部分重疊),長方形中未被這兩張正方形紙片覆蓋的部分用陰影表示,設(shè)圖1中陰影部分的面積為S1,圖2中陰影部分的面積為S2.
(1)在圖1中,EF=___,BF=____;(用含m的式子表示)
(2)請用含m、n的式子表示圖1,圖2中的S1,S2,若m-n=2,請問S2-S1的值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把四張形狀大小完全相同的小長方形卡片(如圖①)不重疊地放在一個(gè)底面為長方形(長為m,寬為n)的盒子底部(如圖②),盒子底部未被卡片覆蓋的部分用陰影表示,則圖②中兩塊陰影部分周長和是_________(用代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知的頂點(diǎn)A和AB邊的中點(diǎn)C都在雙曲線的一個(gè)分支上,點(diǎn)B在x軸上,則的面積為
A.3B.4C.6D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,G是BD上一點(diǎn),連接CG并延長交BA的延長線于點(diǎn)F,交AD于點(diǎn)E,連接AG.
(1)求證:AG=CG;
(2)求證:AG2=GE·GF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com