【題目】如圖,ABC,AD平分BACDGBC且平分BCDEABE,DFACF

1)求證BE=CF

2)如果AB=8,AC=6,AE、BE的長

【答案】(1)證明見解析;(2)AE=7,BE=1.

【解析】試題分析:1)連接DB、DC,先由角平分線的性質(zhì)就可以得出DE=DF,再證明DBE≌△DCF就可以得出結(jié)論;

2)由條件可以得出ADE≌△ADF就可以得出AE=AF,進(jìn)而就可以求出結(jié)論.

試題解析:1)證明:連接DBDC,

DGBC且平分BC,

DB=DC

AD為∠BAC的平分線,DEAB,DFAC,

DE=DFAED=BED=ACD=DCF=90°

RtDBERtDCF

,

RtDBERtDCFHL),

BE=CF

2)在RtADERtADF

,

RtADERtADFHL).

AE=AF

AC+CF=AF

AE=AC+CF

AE=AB﹣BE,

AC+CF=AB﹣BE,

AB=8,AC=6,

6+BE=8﹣BE,

BE=1,

AE=8﹣1=7

AE=7,BE=1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,∠B=C,AB=AC=10cmBC=8cm,點DAB的中點.

1)如果點P在線段BC上以3cm/s的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.

①若點Q的運動速度與點P的運動速度相等,經(jīng)過1s后,BPDCQP是否全等,請說明理由;

②若點Q的運動速度與點P的運動速度不相等,當(dāng)點Q的運動速度為多少時,能夠使BPDCQP全等?

2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿ABC三邊運動,求經(jīng)過多長時間點P與點Q第一次在ABC邊上相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形的對稱軸的條數(shù)為( 。
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論中錯誤的是( 。

A. 三角形的內(nèi)角和等于180°

B. 三角形的外角和小于四邊形的外角和

C. 五邊形的內(nèi)角和等于540°

D. 正六邊形的一個內(nèi)角等于120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程m x2-(m+2)x+2=0(m≠0).

(1)求證:無論m為何值時,這個方程總有兩個實數(shù)根;

(2)若方程的兩個實數(shù)根都是整數(shù),求正整數(shù)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李先生乘出租車去某公司辦事,下車時,打出的電子收費單為里程11千米,應(yīng)收29.10.該城市的出租車收費標(biāo)準(zhǔn)如下表所示,請求出起步價N(N<12)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一天晚上,身高1.6米的小明站在路燈下,發(fā)現(xiàn)自己的影子恰好是4塊地磚的長(每塊地磚為邊長0.5米的正方形).當(dāng)他沿著影子的方向走了4塊地磚時,發(fā)現(xiàn)自己的影子恰好是5塊地磚的長,根據(jù)這個發(fā)現(xiàn),他就算出了路燈的高度,你知道他是怎么算的嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若兩條拋物線的頂點相同,則稱它們?yōu)?/span>友好拋物線,拋物線C1y1=﹣2x2+4x+2C2u2=﹣x2+mx+n友好拋物線

1)求拋物線C2的解析式.

2)點A是拋物線C2上在第一象限的動點,過AAQx軸,Q為垂足,求AQ+OQ的最大值.

3)設(shè)拋物線C2的頂點為C,點B的坐標(biāo)為(﹣1,4),問在C2的對稱軸上是否存在點M,使線段MB繞點M逆時針旋轉(zhuǎn)90°得到線段MB′,且點B′恰好落在拋物線C2上?若存在求出點M的坐標(biāo),不存在說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校七年級500名學(xué)生身高情況,從中抽取了50名學(xué)生進(jìn)行檢測,這50名學(xué)生的身高是(  。

A.總體B.個體C.樣本容量D.總體的一個樣本

查看答案和解析>>

同步練習(xí)冊答案