【題目】一水果經(jīng)銷商購進了A,B兩種水果各10箱,分配給他的甲、乙兩個零售店(分別簡稱甲店、乙店)銷售,預(yù)計每箱水果的盈利情況如下表:

A種水果/箱

B種水果/箱

甲店

11元

17元

乙店

9元

13元


(1)如果甲、乙兩店各配貨10箱,其中A種水果兩店各5箱,B種水果兩店各5箱,請你計算出經(jīng)銷商能盈利多少元?
(2)在甲、乙兩店各配貨10箱(按整箱配送),且保證乙店盈利不小于100元的條件下,請你設(shè)計出使水果經(jīng)銷商盈利最大的配貨方案,并求出最大盈利為多少?

【答案】
(1)解:經(jīng)銷商能盈利=5×11+5×17+5×9+5×13=5×50=250
(2)解:設(shè)甲店配A種水果x箱,則甲店配B種水果(10﹣x)箱,

乙店配A種水果(10﹣x)箱,乙店配B種水果10﹣(10﹣x)=x箱.

∵9×(10﹣x)+13x≥100,

∴x≥2 ,

經(jīng)銷商盈利為w=11x+17(10﹣x)+9(10﹣x)+13x=﹣2x+260.

∵﹣2<0,

∴w隨x增大而減小,

∴當x=3時,w值最大.

甲店配A種水果3箱,B種水果7箱.乙店配A種水果7箱,B種水果3箱.最大盈利:﹣2×3+260=254(元).


【解析】(1)分別計算兩種水果的盈利相加即可;(2)由“乙店盈利不小于100元“可構(gòu)建不等式9×(10﹣x)+13x≥100,最值問題可構(gòu)造函數(shù),求出x的范圍,在此范圍內(nèi)按函數(shù)的單調(diào)性求出最值.
【考點精析】利用正比例函數(shù)的圖象和性質(zhì)對題目進行判斷即可得到答案,需要熟知正比函數(shù)圖直線,經(jīng)過一定過原點.K正一三負二四,變化趨勢記心間.K正左低右邊高,同大同小向爬山.K負左高右邊低,一大另小下山巒.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】看圖填空:已知如圖,AD⊥BCD,EG⊥BCG,∠E=∠1,

求證:AD平分∠BAC.

證明:∵AD⊥BCD,EG⊥BCG( 已知

∴∠ADC=90°,∠EGC=90°___________

∴∠ADC=∠EGC(等量代換

∴AD∥EG_____________

∴∠1=∠2___________

∠E=∠3___________

∵∠E=∠1( 已知

∴∠2=∠3___________

∴AD平分∠BAC___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將1,2,3,……,100100個自然數(shù),任意分為50,每組兩個數(shù),現(xiàn)將每組的兩個數(shù)中任一數(shù)值記作a,另一個記作b,代入代數(shù)式中進行計算,求出其結(jié)果,50組數(shù)代入后可求得50個值,則這50個值的和的最大值是___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為,連接AC、BD交于點O,CE平分∠ACD交BD于點E,

(1)求DE的長;

(2)過點EF作EF⊥CE,交AB于點F,求BF的長;

(3)過點E作EG⊥CE,交CD于點G,求DG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=3,AC=6,將△ABC繞點C按逆時針方向旋轉(zhuǎn)得到△A1B1C,使CB1∥AD,分別延長AB、CA1相交于點D,則線段BD的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】全面二孩政策于2016年1月1日正式實施,黔南州某中學對八年級部分學生進行了隨機問卷調(diào)查,其中一個問題“你爸媽如果給你添一個弟弟(或妹妹),你的態(tài)度是什么?”共有如下四個選項(要求僅選擇一個選項):
A.非常愿意 B.愿意 C.不愿意 D.無所謂
如圖是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖,請結(jié)合圖中信息解答以下問題:

(1)試問本次問卷調(diào)查一共調(diào)查了多少名學生?并補全條形統(tǒng)計圖;
(2)若該年級共有450名學生,請你估計全年級可能有多少名學生支持(即態(tài)度為“非常愿意”和“愿意”)爸媽給自己添一個弟弟(或妹妹)?
(3)在年級活動課上,老師決定從本次調(diào)查回答“不愿意”的同學中隨機選取2名同學來談?wù)勊麄兊南敕,而本次調(diào)查回答“不愿意”的這些同學中只有一名男同學,請用畫樹狀圖或列表的方法求選取到兩名同學中剛好有這位男同學的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:
一般地,當α、β為任意角時,tan(α+β)與tan(α﹣β)的值可以用下面的公式求得:tan(α±β)=
例如:tan15°=tan(45°﹣30°)= = =
= = =2﹣
根據(jù)以上材料,解決下列問題:
(1)求tan75°的值;
(2)都勻文峰塔,原名文筆塔,始建于明代萬歷年間,系五層木塔.文峰塔的木塔年久傾毀,僅存塔基.1983年,人民政府撥款維修文峰塔,成為今天的七層六面實心石塔(圖1),小華想用所學知識來測量該鐵塔的高度,如圖2,已知小華站在離塔底中心A處5.7米的C處,測得塔頂?shù)难鼋菫?5°,小華的眼睛離地面的距離DC為1.72米,請幫助小華求出文峰塔AB的高度.(精確到1米,參考數(shù)據(jù) ≈1.732, ≈1.414)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,DE∥BC,BE與CD交于點O,AO與DE,BC交于N、M,則下列式子中錯誤的是( )

A. =
B. =
C. =
D. =

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,將ACE沿著AE折疊以后C點正好落在AB邊上的點D處.

(1)當∠B=28°時,求∠AEC的度數(shù);

(2)當AC=6,AB=10時,

①求線段BC的長;

②求線段DE的長.

查看答案和解析>>

同步練習冊答案