【題目】解答題
(1)如圖1,AD、BC相交于點(diǎn)O,OA=OC,∠OBD=∠ODB.求證:AB=CD.
(2)如圖2,AB是⊙O的直徑,OA=1,AC是⊙O的弦,過點(diǎn)C的切線交AB的延長線于點(diǎn)D,若OD= ,求∠BAC的度數(shù).
【答案】
(1)證明:∵∠OBD=∠ODB,
∴OB=OD,
在△AOB與△COD中, ,
∴△AOB≌△COD(SAS),
∴AB=CD
(2)解:連接OC,如圖所示:
∵CD與⊙O相切,
∴OC⊥CD,
∵OA=OC,OA=1,
∴OC=1,
∴CD= = =1,
∴CD=OC,
∴△OCD為等腰直角三角形,
∴∠COB=45°,
∴∠BAC= ∠COB=22.5°.
【解析】(1)由∠OBD=∠ODB,得出OB=OD,再由SAS證得△AOB≌△COD,即可得出結(jié)論;(2)連接OC,由CD與⊙O相切,得出OC⊥CD,求出CD=1,得出△OCD為等腰直角三角形,推出∠COD=45°,即可得出結(jié)果.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解切線的性質(zhì)定理(切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB∥CD,∠1=∠2,∠3=∠4.
(1)求證:AD∥BE;
(2)若∠B=∠3=2∠2,求∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將正方形OABC放在平面直角坐標(biāo)系中,O是原點(diǎn),A的坐標(biāo)為(1, ),則點(diǎn)B的坐標(biāo)為( )
A.(1﹣ , +1)
B.(﹣ , +1)??
C.(﹣1, +1)
D.(﹣1, )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的△ABC,若小方格邊長為1,格點(diǎn)△ABC(頂點(diǎn)是網(wǎng)格線交點(diǎn)的三角形)的頂點(diǎn)A,C的坐標(biāo)分別為(﹣1,1),(0,﹣2),請你根據(jù)所學(xué)的知識(shí).
(1)在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;
(2)作出△ABC關(guān)于y軸對稱的三角形A1B1C1;
(3)判斷△ABC的形狀,并求出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑是2,AB是⊙O的弦,點(diǎn)P是弦AB上的動(dòng)點(diǎn),且1≤OP≤2,則弦AB所對的圓周角的度數(shù)是( )
A.60°
B.120°
C.60°或120°
D.30°或150°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,BD是∠B的平分線,交AC于點(diǎn)D,E是AB中點(diǎn),ED交BC的延長線于點(diǎn)F.求證:AB=CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校數(shù)學(xué)綜合實(shí)踐小組的同學(xué)以“綠色出行”為主題,把某小區(qū)的居民對共享單車的了解和使用情況進(jìn)行了問卷調(diào)查,在這次調(diào)查中,發(fā)現(xiàn)有20人對于共享單車不了解,使用共享單車的居民每天騎行路程不超過8千米,并將調(diào)查結(jié)果制作成統(tǒng)計(jì)圖,如圖所示.
(1)本次調(diào)查人數(shù)共人 , 使用過共享單車的有人;
(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)如果這個(gè)小區(qū)大約有3000名居民,請估算出每天的騎行路程在2~4千米的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】射線OA、OB、OC、OD、OE有公共端點(diǎn)O.
(1)若OA與OE在同一直線上(如圖1),試寫出圖中小于平角的角;
(2)若∠AOC=108°,∠COE=n°(0<n<72),OB平分∠AOE,OD平分∠COE(如圖2),求∠BOD的度數(shù);
(3)如圖3,若∠AOE=88°,∠BOD=30°,射OC繞點(diǎn)O在∠AOD內(nèi)部旋轉(zhuǎn)(不與OA、OD重合).探求:射線OC從OA轉(zhuǎn)到OD的過程中,圖中所有銳角的和的情況,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com