【題目】如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),連接AC.過點(diǎn)B作⊙O的切線,交AC的延長線于點(diǎn)D,在AD上取一點(diǎn)E,使AE=AB,連接BE,交⊙O于點(diǎn)F.
請補(bǔ)全圖形并解決下面的問題:
(1)求證:∠BAE=2∠EBD;
(2)如果AB=5,sin∠EBD=.求BD的長.
【答案】(1)詳見解析;(2).
【解析】
(1)利用等腰三角形的性質(zhì)證明∠BAE=2∠BAF,再證明∠EBD=∠BAF即可解決問題;
(2)作EH⊥BD于H.由sin∠BAF=sin∠EBD=,AB=5,推出BF=,推出BE=2BF=2,在Rt△BEH中,EH=BEsin∠EBH=2,推出BH==4,由EH∥AB,推出,由此即可求出DH解決問題;
(1)證明:連接AF.
∵AB是直徑,
∴∠AFB=90°,
∴AF⊥BE,
∵AB=AE,
∴∠BAE=2∠BAF,
∵BD是⊙O的切線,
∴∠ABD=90°,
∵∠BAF+∠ABE=90°,∠ABF+∠EBD=90°,
∴∠EBD=∠BAF,
∴∠BAE=2∠EBD.
(2)解:作EH⊥BD于H.
∵∠BAF=∠EBD,
∴sin∠BAF=sin∠EBD=,∵AB=5,
∴BF=,
∴BE=2BF=2,
在Rt△BEH中,EH=BEsin∠EBH=2,
∴BH==4,
∵EH∥AB,
∴,
∴,
∴DH=,
∴BD=BH+HD=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某中學(xué)九年級(jí)數(shù)學(xué)活動(dòng)小組選定測量學(xué)校前面小河對(duì)岸大樹BC的高度,他們在斜坡上D處測得大樹頂端B的仰角是30°,朝大樹方向下坡走6米到達(dá)坡底A處,在A處測得大樹頂端B的仰角是48°.若斜坡FA的坡比i=1:,求大樹的高度.(結(jié)果保留一位小數(shù))參考數(shù)據(jù):sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,取1.73.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷某校數(shù)學(xué)興趣小組設(shè)計(jì)了“你最喜歡的溝通方式”調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請結(jié)合圖中所給的信息解答下列問題:
(1)這次統(tǒng)計(jì)共抽查了多少名學(xué)生?在扇形統(tǒng)計(jì)圖中,表示" "的扇形圓心角的度數(shù)是多少;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)該校共有1500名學(xué)生,請估計(jì)該校最喜歡用 “微信”進(jìn)行溝通的學(xué)生大約有多少名?
(4)某天甲、乙兩名同學(xué)都想從“微信"、""、“電話"三種溝通方式中選一種方式與對(duì)方聯(lián)系,請用列表或畫樹狀圖的方法求出甲、乙兩名同學(xué)恰好選擇同一種溝通方式的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解七年級(jí)學(xué)生體育測試情況,以七年級(jí)(1)班學(xué)生的體育測試成績?yōu)闃颖荆?/span>A、B、C、D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制如下的統(tǒng)計(jì)圖,請你結(jié)合圖中所給的信息解答下列問題:
(說明:A級(jí):90分~100分;B級(jí):75分~89分;C級(jí):60分~74分;D級(jí):60分以下)
(1)請把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)扇形統(tǒng)計(jì)圖中D級(jí)所在的扇形的圓心角度數(shù)是 ;
(3)若該校七年級(jí)有600名學(xué)生,請用樣本估計(jì)體育測試中A級(jí)學(xué)生人數(shù)約為多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在筆直的湖邊公路上同起點(diǎn)、同終點(diǎn)、同方向勻速步行2400米,先到終點(diǎn)的人原地休息.已知甲先出發(fā)4分鐘,在整個(gè)步行過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時(shí)間t(分)之間的關(guān)系如圖所示,下列結(jié)論:
①甲步行的速度為60米/分;
②乙走完全程用了32分鐘;
③乙用16分鐘追上甲;
④乙到達(dá)終點(diǎn)時(shí),甲離終點(diǎn)還有300米
其中正確的結(jié)論有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以AD為直徑的半圓O經(jīng)過Rt△ABC斜邊AB的兩個(gè)端點(diǎn),交直角邊AC于點(diǎn)E,B、E是半圓弧的三等分點(diǎn),弧BE的長為π,則圖中陰影部分的面積為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,E是正方形ABCD邊AB上的一點(diǎn),連接BD、DE,將∠BDE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,旋轉(zhuǎn)后角的兩邊分別與射線BC交于點(diǎn)F和點(diǎn)G.
①線段DB和DG的數(shù)量關(guān)系是 ;
②寫出線段BE,BF和DB之間的數(shù)量關(guān)系.
(2)當(dāng)四邊形ABCD為菱形,∠ADC=60°,點(diǎn)E是菱形ABCD邊AB所在直線上的一點(diǎn),連接BD、DE,將∠BDE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)120°,旋轉(zhuǎn)后角的兩邊分別與射線BC交于點(diǎn)F和點(diǎn)G.
①如圖2,點(diǎn)E在線段AB上時(shí),請?zhí)骄烤段BE、BF和BD之間的數(shù)量關(guān)系,寫出結(jié)論并給出證明;
②如圖3,點(diǎn)E在線段AB的延長線上時(shí),DE交射線BC于點(diǎn)M,若BE=1,AB=2,直接寫出線段GM的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有大小兩種貨車,5輛大貨車與3輛小貨車一次可以運(yùn)貨21噸,3輛大貨車與2輛小貨車一次可以運(yùn)貨13噸.
(1)每輛大貨車和每輛小貨車一次各可以運(yùn)貨多少噸?
(2)現(xiàn)有這兩種貨車共10輛,要求一次運(yùn)貨不低于23噸,則其中大貨車至少多少輛?
(3)日前有20噸貨物需要運(yùn)輸,欲租用這兩種貨車運(yùn)送,要求全部貨物一次運(yùn)完且每輛車必須裝滿.已知每輛大貨車一次運(yùn)貨租金為400元,每輛小貨車一次運(yùn)貨租金為200元,請列出所有的運(yùn)輸方案井求出最少租金
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過,,對(duì)稱軸為直線.
(1)求該拋物線和直線的解析式;
(2)點(diǎn)是直線上方拋物線上的動(dòng)點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為,試用含的代數(shù)式表示的面積,并求出面積的最大值;
(3)設(shè)P點(diǎn)是直線上一動(dòng)點(diǎn),為拋物線上的點(diǎn),是否存在點(diǎn),使以點(diǎn)、、P、為頂點(diǎn)的四邊形為平行四邊形,若存在,請直接寫出符合條件的所有點(diǎn)坐標(biāo),不存在說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com