精英家教網(wǎng)如圖,△ABC的內(nèi)切圓分別切
.
AB
.
BC
、
.
AC
于D、E、F三點,其中P、Q兩點分別在
DE
、
DF
上.若∠A=30°,∠B=80°,∠C=70°,則弧長
DPE
與弧長
DQF
的比值為( 。
A、
2
3
B、
8
7
C、
4
3
D、
8
3
分析:設(shè)△ABC的內(nèi)切圓的圓心為O,連接OD、OE、OF,所以∠ADO=∠AFO=∠BDO=∠BEO=90°;再根據(jù)四邊開的內(nèi)角和定理,∠A+∠DOF=180°,則∠ADO=150°,同理∠EOD=180°-80°=100°;最后由弧的比等于弧所對的圓心角的比,可得出弧長
DPE
與弧長
DQF
的比值2:3.
解答:精英家教網(wǎng)解:設(shè)△ABC的內(nèi)切圓的圓心為O,連接OD、OE、OF,
∵∠ADO=∠AFO=∠BDO=∠BEO=90°,
∴∠A+∠DOF=180°,
∴∠DOF=150°,
同理∠EOD=180°-80°=100°,
∴弧長
DPE
與弧長
DQF
的比值2:3.
故選A.
點評:本題主要考查了內(nèi)切圓的性質(zhì)及弧長的比.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

5、已知:如圖,△ABC內(nèi)接于⊙O,AE切⊙O于點A,BD∥AE交AC的延長線于點D,求證:AB2=AC•AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,△ABC內(nèi)接于⊙O1,以AC為直徑的⊙O2交BC于點D,AE切⊙O1于點A,交⊙O2精英家教網(wǎng)點E,連接AD、CE,若AC=7,AD=3
5
,tanB=
5
2

求:(1)BC的長;
(2)CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知如圖,△ABC內(nèi)切⊙O于D、E、F三點,內(nèi)切圓⊙O的半徑為1,∠C=60°,AB=5,則△ABC的周長為(  )
A、12
B、14
C、10+2
3
D、10+
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:解題升級  解題快速反應(yīng)一典通  九年級級數(shù)學(xué) 題型:044

己知:如圖,⊙O與內(nèi)切于點B,BC是⊙O的直徑,BC=6,BF為的直徑,BF=4,⊙O的弦BA交于點D,連接DF、AC、CD.(1)求證:DF∥AC;(2)當(dāng)∠ABC等于多少度時,CD與相切?并證明你的結(jié)論.(3)在(2)的前提下,連接FA交CD于點E,求AF、EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步題 題型:解答題

已知如圖,⊙O的內(nèi)接△ABC,AE切⊙O于A點,過C作AE的平行線交AB于D點.   
(1)求證:AC2=AB·AD.  
(2)若∠B=60°,⊙O的直徑為6,求S

查看答案和解析>>

同步練習(xí)冊答案