【題目】如圖,已知點(diǎn)A是反比例函數(shù) y = (x>0 )的圖象上的一個(gè)動(dòng)點(diǎn),連接OA ,OB⊥OA,且OB =2OA.那么經(jīng)過點(diǎn)B的反比例函數(shù)的表達(dá)式為( )
A.y=-B.y= C.y=-D.y=
【答案】C
【解析】
過A作AC⊥y軸,BD⊥y軸,可得∠ACO=∠BDO=90°,利用三角關(guān)系得到三角形相似,由相似得比例求出相似比,確定出面積比,求出三角形AOC面積,進(jìn)而確定出三角形OBD面積,利用反比例函數(shù)k的幾何意義確定出所求k的值,即可確定出解析式.
過A作AC⊥y軸,BD⊥y軸,可得∠ACO=∠BDO=90°,
∵∠AOC+∠OAC=90°,∠AOC+∠BOD=90°,
∴∠OAC=∠BOD,
∴△AOC∽△OBD,
∵OB=2OA,
∴△AOC與△OBD相似比為1:2,
∴: =1:4,
∵點(diǎn)A在反比例的圖象上,
∴△AOC面積為,
∴△OBD面積為2,
經(jīng)過點(diǎn)B的反比例函數(shù)的表達(dá)式為,
∴,即,
∵,
∴,
則經(jīng)過點(diǎn)B的反比例解析式為.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩位同學(xué)利用燈光下的影子來測(cè)量一路燈A的高度,如圖,當(dāng)甲走到點(diǎn)C處時(shí),乙測(cè)得甲直立身高CD與其影子長(zhǎng)CE正好相等,接著甲沿BC方向繼續(xù)向前走,走到點(diǎn)E處時(shí),甲直立身高EF的影子恰好是線段EG,并測(cè)得EG=2.5m.已知甲直立時(shí)的身高為1.75m,求路燈的高AB的長(zhǎng).(結(jié)果精確到0.1m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀,拋物線兩端點(diǎn)與水面的距離都是1米,拱橋的跨度為10米,橋洞與水面的最大距離是5米,橋洞兩側(cè)壁上各有一盞距離水面4米的景觀燈,兩盞景觀燈之間的水平距離為________米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)為平面直角坐標(biāo)系中不重合的兩點(diǎn),以點(diǎn)為圓心且經(jīng)過點(diǎn)作,則稱點(diǎn)為的“關(guān)聯(lián)點(diǎn)”, 為點(diǎn)的“關(guān)聯(lián)圓”.
(1)已知的半徑為1,在點(diǎn)中,的“關(guān)聯(lián)點(diǎn)”為____________(填寫字母);
(2)若點(diǎn),點(diǎn),為點(diǎn)的“關(guān)聯(lián)圓”,且的半徑為,求的值;
(3)已知點(diǎn),點(diǎn),是點(diǎn)的“關(guān)聯(lián)圓”,直線與軸,軸分別交于點(diǎn)。若線段上存在的“關(guān)聯(lián)點(diǎn)”,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次方程
(1)若方程有實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
(2)若方程兩實(shí)數(shù)根分別為,且滿足,求實(shí)數(shù)的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 隨機(jī)拋擲一枚均勻的硬幣,落地后反面一定朝上。
B. 從1,2,3,4,5中隨機(jī)取一個(gè)數(shù),取得奇數(shù)的可能性較大。
C. 某彩票中獎(jiǎng)率為,說明買100張彩票,有36張中獎(jiǎng)。
D. 打開電視,中央一套正在播放新聞聯(lián)播。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:拋物線交x軸于A,C兩點(diǎn),交y軸于點(diǎn)B,且OB=2CO.
(1)求二次函數(shù)解析式;
(2)在二次函數(shù)圖象位于x軸上方部分有兩個(gè)動(dòng)點(diǎn)M、N,且點(diǎn)N在點(diǎn)M的左側(cè),過M、N作x軸的垂線交x軸于點(diǎn)G、H兩點(diǎn),當(dāng)四邊形MNHG為矩形時(shí),求該矩形周長(zhǎng)的最大值;
(3) 拋物線對(duì)稱軸上是否存在點(diǎn)P,使得△ABP為直角三角形?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點(diǎn)A(1,m),這兩條直線分別與x軸交于B,C兩點(diǎn).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)直接寫出當(dāng)x>0時(shí),不等式x+b>的解集;
(3)若點(diǎn)P在x軸上,連接AP把△ABC的面積分成1:3兩部分,求此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com