【題目】如圖,點在線段上,在的同側作等腰和等腰,與、分別交于點、.對于下列結論:
①;②;③.其中正確的是( )
A. ①②③ B. ① C. ①② D. ②③
【答案】A
【解析】(1)由等腰Rt△ABC和等腰Rt△ADE三邊份數(shù)關系可證;
(2)通過等積式倒推可知,證明△PAM∽△EMD即可;
(3)2CB2轉(zhuǎn)化為AC2,證明△ACP∽△MCA,問題可證.
由已知:AC=AB,AD=AE
∴
∵∠BAC=∠EAD
∴∠BAE=∠CAD
∴△BAE∽△CAD
所以①正確
∵△BAE∽△CAD
∴∠BEA=∠CDA
∵∠PME=∠AMD
∴△PME∽△AMD
∴
∴MPMD=MAME
所以②正確
∵∠BEA=∠CDA
∠PME=∠AMD
∴P、E、D、A四點共圓
∴∠APD=∠EAD=90°
∵∠CAE=180°-∠BAC-∠EAD=90°
∴△CAP∽△CMA
∴AC2=CPCM
∵AC=AB
∴2CB2=CPCM
所以③正確
故選A.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△ABC三個頂點的坐標分別是A(2,2),B(4,0),C(4,﹣4).
(1)請在圖中,畫出△ABC向左平移6個單位長度后得到的△A1B1C1;
(2)以點O為位似中心,將△ABC縮小為原來的,得到△A2B2C2,請在圖中y軸右側,畫出△A2B2C2,并求出∠A2C2B2的正弦值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在東西向的馬路上有一個巡崗亭,巡崗員從崗亭出發(fā)以速度勻速來回巡邏,如果規(guī)定向東巡邏為正,向西巡邏為負,巡邏情況記錄如下:(單位:千米)
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 |
(1)第幾次結束時巡邏員甲距離崗亭最遠?距離有多遠?
(2)甲巡邏過程中配置無線對講機,并一直與留守在崗亭的乙進行通話,問甲巡邏過程中,甲與乙保持通話的時長共多少小時?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知有理數(shù)a、b在數(shù)軸上的對應點如圖所示.
(1)已知a=–2.3,b=0.4,計算|a+b|–|a|–|1–b|的值;
(2)已知有理數(shù)a、b,計算|a+b|–|a|–|1–b|的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校為了更新體育器材,計劃購買足球和籃球共100個,經(jīng)市場調(diào)查:購買2個足球和5個籃球共需600元;購買3個足球和1個籃球共需380元。
(1)請分別求出足球和籃球的單價;
(2)學校去采購時恰逢商場做促銷活動,所有商品打九折,并且學校要求購買足球的數(shù)量不少于籃球數(shù)量的3倍,設購買足球a個,購買費用W元。
①寫出W關于a的函數(shù)關系式,
②設計一種實際購買費用最少的方案,并求出最少費用。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知四邊形ABCD是平行四邊形,下列結論中,不一定正確的是( )
A.△AOB的面積等于△AOD的面積B.當AC⊥BD時,它是菱形
C.當OA=OB時,它是矩形D.△AOB的周長等于△AOD的周長
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】感知:解不等式 .根據(jù)兩數(shù)相除,同號得正,異號得負,得不等式組 或不等式組 解不等式組 ,得 ;解不等式組 ,得 ,所以原不等式的解集為 或.
(1)探究:解不等式 .
(2)應用:不等式 的解集是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=80°,∠BAC=40°.
(1)尺規(guī)作圖作出AB的垂直平分線DE,分別與AC、AB交于點D、E.并連結BD;(保留作圖痕跡,不寫作法)
(2)證明:△ABC∽△BDC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:
如圖12-1,過銳角△ABC的三個頂點分別作出與水平線垂直的三條直線,外側兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長度叫△ABC的“鉛垂高(h)”.我們可得出一種計算三角形面積的新方法:,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:
如圖12-2,拋物線頂點坐標為點C(1,4),交x軸于點A,交y軸于點B(0,3).
(1)求拋物線解析式和線段AB的長度;
(2)點P是拋物線(在第一象限內(nèi))上的一個動點,連結PA,PB,當P點運動到頂點C時,求△CAB的鉛垂高CD及;
(3)是否存在一點P,使S△PAB=S△CAB,若存在,求出P點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com