【題目】關(guān)于x的方程ax-3a+1x+2(a+1)=0有兩個(gè)不相等的實(shí)數(shù)根x1,x2,x1-x1x2+x2=1-a,則a=

【答案】-1

【解析】

試題根據(jù)根與系數(shù)的關(guān)系得出x1+x2=-,x1x2=,整理原式即可得出關(guān)于a的方程求出即可.

試題解析:關(guān)于x的方程ax2-3a+1x+2a+1=0有兩個(gè)不相等的實(shí)根x1、x2,

∴x1+x2=x1x2=,

依題意0,即(3a+12-8aa+1)>0

a2-2a+10,(a-120,a≠1,

關(guān)于x的方程ax2-3a+1x+2a+1=0有兩個(gè)不相等的實(shí)根x1x2,且有x1-x1x2+x2=1-a

∴x1-x1x2+x2=1-a,

∴x1+x2-x1x2=1-a,

-=1-a,

解得:a=±1,又a≠1,

∴a=-1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將一個(gè)鈍角ABC(其中ABC120°)繞

點(diǎn)B順時(shí)針旋轉(zhuǎn)得A1BC1,使得C點(diǎn)落在AB的延長(zhǎng)線上的點(diǎn)C1處,連結(jié)AA1

1)寫出旋轉(zhuǎn)角的度數(shù);

2)求證:A1ACC1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC=90°,AD∥BC,AD= ,以對(duì)角線BD為直徑的⊙O與CD切于點(diǎn)D,與BC交于點(diǎn)E,∠ABD=30°,則圖中陰影部分的面積為 . (不取近似值)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ABC=90°,AC=AD,MN分別為AC,CD的中點(diǎn),連結(jié)BM,MN

1)求證BM=MN

2)若∠BCN=135°,求∠BMN的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)AC分別在x軸上、y軸上,CB//OA,OA=8,若點(diǎn)B的坐標(biāo)為(a,b),b=.

(1)直接寫出點(diǎn)AB、C的坐標(biāo);

(2)若動(dòng)點(diǎn)P從原點(diǎn)O出發(fā)沿x軸以每秒2個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng)當(dāng)直線PC把四邊形OABC分成面積相等的兩部分停止運(yùn)動(dòng),求P點(diǎn)運(yùn)動(dòng)時(shí)間;

(3)在(2)的條件下,在y軸上是否存在一點(diǎn)Q,連接PQ,使三角形CPQ的面積與四邊形OABC的面積相等?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABDC,ADBC,E,FDB上兩點(diǎn)且BFDE,若∠AEB=120°,∠ADB=30°,則∠BCF= ( 。

A. 150° B. 40° C. 80° D. 90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的有(

①在同一平面內(nèi)不相交的兩條線段必平行

②過(guò)兩條直線外一點(diǎn),一定可做直線,使,且

③過(guò)直線外一點(diǎn)有且只有一條直線與已知直線平行

④兩直線被第三條直線所截得的同旁內(nèi)角的平分線互相垂直

A. 0個(gè)B. 1個(gè)C. 2個(gè)D. 3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=-3x3x軸,y軸分別交于A,B,兩點(diǎn),以AB為邊在第一象限內(nèi)作正方形ABCD,點(diǎn)D在反比例函數(shù)y (k≠0)的圖象上.

(1)k的值;

(2)若將正方形沿x軸負(fù)方向平移m個(gè)單位長(zhǎng)度后,點(diǎn)C恰好落在該反比例函數(shù)的圖象上,則m的值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)E、F在直線AB上,點(diǎn)G在線段CD上,EDFG交于點(diǎn)H,∠C=EFG,∠CED=GHD.

1)求證:ABCD;

2)若∠EHF=80°,∠D=40°,求∠AEM的度數(shù)。

查看答案和解析>>

同步練習(xí)冊(cè)答案