【題目】在學(xué)習(xí)了“求簡(jiǎn)單隨機(jī)事件發(fā)生的可能性大小”知識(shí)后,小敏,小聰,小麗三人分別編寫了一道有關(guān)隨機(jī)事件的試題并進(jìn)行了解答.小敏,小聰,小麗編寫的試題分別是下面的(1)(2)(3).
(1)一個(gè)不透明的盒子里裝有4個(gè)紅球,2個(gè)白球,除顏色外其它都相同,攪均后,從中隨意摸出一個(gè)球,摸出紅球的可能性是多少?解:P(摸出一個(gè)紅球)=.
(2)口袋里裝有如圖所示的1角硬幣2枚、5角硬幣2枚、1 元硬幣1枚.?dāng)嚲螅瑥闹须S意摸出一枚硬幣,摸出1角硬幣的可能性是多少?解:P(摸出1角的硬幣)=.
(3)如圖,是一個(gè)轉(zhuǎn)盤,盤面上有5個(gè)全等的扇形區(qū)域,每個(gè)區(qū)域顯示有不同的顏色,輕輕轉(zhuǎn)動(dòng)轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止后,指針對(duì)準(zhǔn)紅色區(qū)域的可能性是多少?解:P(指針對(duì)準(zhǔn)紅色區(qū)域)=.
問題:根據(jù)以上材料回答問題:小敏,小聰,小麗三人中,誰編寫的試題及解答是正確的,并簡(jiǎn)要說明其他兩人所編試題或解答的不足之處.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了打造區(qū)域中心城市,實(shí)現(xiàn)攀枝花跨越式發(fā)展,我市花城新區(qū)建設(shè)正按投資計(jì)劃有序推進(jìn).花城新區(qū)建設(shè)工程部,因道路建設(shè)需要開挖土石方,計(jì)劃每小時(shí)挖掘土石方540m3 , 現(xiàn)決定向某大型機(jī)械租賃公司租用甲、乙兩種型號(hào)的挖掘機(jī)來完成這項(xiàng)工作,租賃公司提供的挖掘機(jī)有關(guān)信息如下表所示:
租金(單位:元/臺(tái)時(shí)) | 挖掘土石方量(單位:m3/臺(tái)時(shí)) | |
甲型挖掘機(jī) | 100 | 60 |
乙型挖掘機(jī) | 120 | 80 |
(1)若租用甲、乙兩種型號(hào)的挖掘機(jī)共8臺(tái),恰好完成每小時(shí)的挖掘量,則甲、乙兩種型號(hào)的挖掘機(jī)各需多少臺(tái)?
(2)如果每小時(shí)支付的租金不超過850元,又恰好完成每小時(shí)的挖掘量,那么共有哪幾種不同的租用方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小紅晚上在一條筆直的小路上由A處徑直走到B處,小路的正中間有一盞路燈,那么小紅在燈光照射下的影長(zhǎng)l與她行走的路程s之間的變化關(guān)系用圖象刻畫出來大致是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC沿直線l向右移了3厘米,得△FDE,且BC=6厘米,∠B=40°.
(1)求BE;
(2)求∠FDB的度數(shù);
(3)找出圖中相等的線段(不另添加線段);
(4)找出圖中互相平行的線段(不另添加線段).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在三角形ABC中,BC=14,AC=9,AB=13,它的內(nèi)切圓分別和BC、AC、AB切于點(diǎn)D、E、F,那么AF、BD、CE的長(zhǎng)分別為( )
A.AF=4,BD=9,CE=5
B.AF=4,BD=5,CE=9
C.AF=5,BD=4,CE=9
D.AF=9,BD=4,CE=5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC的內(nèi)切圓⊙O與AB、BC、CA分別相切于點(diǎn)D、E、F,且∠ACB=90°,AB=5,BC=3,點(diǎn)P是邊AC上的一動(dòng)點(diǎn),PH⊥AB,垂足為H.
(1)求⊙O的半徑的長(zhǎng)及線段AD的長(zhǎng);
(2)設(shè)PH=x,PC=y,求y關(guān)于x的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:O是直線AB上一點(diǎn),∠COD是直角,OE平分∠BOC
(1)如圖1,若∠AOC=30°,求∠DOE的度數(shù)。
(2)如圖1,若∠AOC=,直接寫出∠DOE的度數(shù)。(用含的代數(shù)式表示)
(3)將圖1中的∠DOC繞頂點(diǎn)O順時(shí)針旋轉(zhuǎn)至圖2的位置,其它條件不變,探究∠AOC和∠DOE的度數(shù)之間的關(guān)系,寫出結(jié)論,并說明理由。
(4)在圖2中,若∠AOC內(nèi)部有一條射線OF,且滿足∠AOC-4∠AOF=2∠BOE,其它條件不變,試寫出∠AOF與∠DOE度數(shù)的關(guān)系(不寫過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+1與x軸、y軸分別交于點(diǎn)A、B,以線段AB為直角邊在第﹣象限內(nèi)作等腰直角△ABC,∠BAC=90°,
(1)求點(diǎn)A、B、C的坐標(biāo);
(2)如果在第二象限內(nèi)有﹣點(diǎn)P(a,),且△ABP的面積與△ABC的面積相等,求a的值;
(3)請(qǐng)直接寫出點(diǎn)Q的坐標(biāo),使得以Q、A、C為頂點(diǎn)的三角形和△ABC全等.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com