【題目】對于一個函數(shù)給出如下定義:對于函數(shù),若當,函數(shù)值滿足,且滿足,則稱此函數(shù)為“屬和合函數(shù)”.
例如:正比例函數(shù),當時,,則,求得:,所以函數(shù)為“3屬和合函數(shù)”.
(1)若一次函數(shù)為“1屬和合函數(shù)”,則的值_________;
(2)已知二次函數(shù),當時,是“屬和合函數(shù)”,則的取值范圍_________.
【答案】a=1或a=﹣1
【解析】
(1)分兩種情況:利用“k屬和合函數(shù)”的定義即可得出結論;
(2)分四種情況,各自確定出最大值和最小值,最后利用“k屬和合函數(shù)”的定義即可得出結論;
解:(1)當a>0時,
∵1≤x≤5,
∴a-1≤y≤5a-1,
∵函數(shù)y=ax-1(1≤x≤5)為“1屬和合函數(shù)”,
∴(5a-1)-(a-1)=5-1,
∴a=1;
當a<0時,(a-1)-(5a-1)=5-1,
∴a=-1,
∴a=1或a=-1;
(2)∵二次函數(shù)y=-3x2+6ax+a2+2a的對稱軸為直線x=a,
∵當-1≤x≤1時,y是“k屬和合函數(shù)”,
∴當x=-1時,y=a2-4a-3,
當x=1時,y=a2+8a-3,
當x=a時,y=4a2+2a,
①如圖1,當a≤-1時,
當x=-1時,有ymax=a2-4a-3,
當x=1時,有ymin=a2+8a-3
∴(a2-4a-3)-(a2+8a-3)=2k,
∴k=-6a,
∴k≥6;
②如圖2,當-1<a≤0時,
當x=a時,有ymax=4a2+2a,
當x=1時,有ymin=a2+8a-3
∴(4a2+2a)-(a2+8a-3)=2k,
∴k=(a-1)2,
∴≤k<6;
③如圖3,當0<a≤1時,
當x=a時,有ymax=4a2+2a,
當x=-1時,有ymin=a2-4a-3
∴(4a2+2a)-(a2-4a-3)=2k,
∴k=<k≤6;
④如圖4,當a>1時,
當x=1時,有ymax=a2+8a-3,
當x=-1時,有ymin=a2-4a-3
∴(a2+8a-3)-(a2-4a-3)=2k,
∴k=-6a,
∴k>6;
即:k的取值范圍為k≥.
科目:初中數(shù)學 來源: 題型:
【題目】日照間距系數(shù)反映了房屋日照情況.如圖①,當前后房屋都朝向正南時,日照間距系數(shù)=L:(H﹣H1),其中L為樓間水平距離,H為南側樓房高度,H1為北側樓房底層窗臺至地面高度.
如圖②,山坡EF朝北,EF長為15m,坡度為i=1:0.75,山坡頂部平地EM上有一高為22.5m的樓房AB,底部A到E點的距離為4m.
(1)求山坡EF的水平寬度FH;
(2)欲在AB樓正北側山腳的平地FN上建一樓房CD,已知該樓底層窗臺P處至地面C處的高度為0.9m,要使該樓的日照間距系數(shù)不低于1.25,底部C距F處至少多遠?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的盒子里裝有4個標有1,2,3,4的小球,它們形狀、大小完全相同.小明從盒子里隨機取出一個小球,記下球上的數(shù)字,作為點P的橫坐標x,放回然后再隨機取出一個小球,記下球上的數(shù)字,作為點P的縱坐標y.
(1)畫樹狀圖或列表,寫出點P所有可能的坐標;
(2)求出點P在以原點為圓心,5為半徑的圓上的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形OABC的一個頂點O是平面直角坐標系的原點,頂點A,C分別在y軸和x軸上,P為邊OC上的一個動點,且PQ⊥BP,PQ=BP,當點P從點C運動到點O時,可知點Q始終在某函數(shù)圖象上運動,則其函數(shù)圖象是( )
A.線段B.圓弧
C.雙曲線的一部分D.拋物線的一部分
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰中,,.動點在上以每分鐘5個單位長度的速度從點出發(fā)向點移動,過作交邊于點,連結、.設點移動的時間為.
(1)求、兩點的坐標;
(2)計算:當面積最大時,的值;
(3)在(2)的條件下,邊上是否還存在一個點,使得?若存在,請直接寫出點的坐標;若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(感知)如圖①,正方形中,點在邊上,平分.若我們分別延長與,交于點,則易證.(不需要證明)
(探究)如圖②,在矩形中,點在邊的中點,點在邊上,平分.求證:.
(應用)在(探究)的條件下,若,,直接寫出的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,拋物線y=x2+bx+c經(jīng)過A、B兩點,A、B兩點的坐標分別為(﹣1,0)、(0,﹣3).
(1)求拋物線的函數(shù)解析式;
(2)點E為拋物線的頂點,點C為拋物線與x軸的另一交點,點D為y軸上一點,且DC=DE,求出點D的坐標;
(3)在第二問的條件下,在直線DE上存在點P,使得以C、D、P為頂點的三角形與△DOC相似,請你直接寫出所有滿足條件的點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人要某風景區(qū)游玩,每天某一時段開往該景區(qū)有三輛汽車(票價相同),但是他們不清楚這三輛車的舒適程度,也不知道汽車開來的順序,兩人采用了不同的乘車方案:
甲無論如何總是上開來的第一輛車,而乙則是先觀察后上車,當?shù)谝惠v車開來時,他不上車,而是仔細觀察車輛的舒適狀況,如果第二輛車狀況比第一輛好,他就上第二輛車,如果第二輛不比第一輛好,他就上第三輛車.這三輛車的舒適程度為上、中、下三等,請解決下面的問題:
(1)請用畫樹形圖或列表的方法分析這三輛車出現(xiàn)的先后順序,寫出所有可能的結果;(用上中下表示)
(2)分析甲、乙兩人采用的方案,誰的方案使自己坐上上等車的可能性大,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com