【題目】自習課上小明在準備完成題目:化簡:( x2+6x+8)-6x+8x2+2)發(fā)現(xiàn)系數(shù)印刷不清楚、

1)他把猜成6,請你幫小明完成化簡:(6x2+6x+8)-6x+8x2+2);

2)小明同桌看到他化簡的結果說:你猜錯了,我看到該題標準答案的結果是常數(shù)。請你通過計算說明原題中是幾?

【答案】(1)-2x2+6;(28

【解析】

根據(jù)整式的運算法則即可求出答案.

1)解:(6x2+6x+8-6x+8x2+2=6x2+6x+8-6x-8x2-2=-2x2+6

2)解:設 a,則原式= ax2+6x+8-6x+8x2+2= ax2+6x+8-6x-8x2-2=a-8x2+6

∵標準答案的結果是常數(shù),∴ a-8=0,解得: a=8

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】中考英語聽力測試期間T需要杜絕考點周圍的噪音.如圖,點A是某市一中考考點,在位于考點南偏西15°方向距離500米的C點處有一消防隊.在聽力考試期間,消防隊突然接到報警電話,消防車需沿北偏東75°方向的公路CF前往救援.已知消防車的警報聲傳播半徑為400米,若消防車的警報聲對聽力測試造成影響,則消防車必須改道行駛.試問:消防車是否需要改道行駛?

說明理由.(1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】初一(1)班針對你最喜愛的課外活動項目對全班學生進行調(diào)查(每名學生分別選一個活動項目),并根據(jù)調(diào)查結果列出統(tǒng)計表,繪制成扇形統(tǒng)計圖.

男、女生所選項目人數(shù)統(tǒng)計表

項目

男生(人數(shù))

女生(人數(shù))

機器人

7

9

3D打印

m

4

航模

2

2

其他

5

n

根據(jù)以上信息解決下列問題:

(1)m=_____,n=_____;

(2)扇形統(tǒng)計圖中機器人項目所對應扇形的圓心角度數(shù)為_____°;

(3)從選航模項目的4名學生中隨機選取2名學生參加學校航模興趣小組訓練,請用列舉法(畫樹狀圖或列表)求所選取的2名學生中恰好有1名男生、1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,直線MN⊙OA,B兩點,AC是直徑,AD平分∠CAM⊙OD,過DDE⊥MNE

1)求證:DE⊙O的切線;

2)若DE=6cm,AE=3cm,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用尺規(guī)在一個平行四邊形內(nèi)作菱形ABCD,下列作法中錯誤的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)y=﹣在第二象限的圖象上有兩點A、B,它們的橫坐標分別為﹣1、﹣2,在直線y=x上求一點P,使PA+PB最。畡tP點坐標為(  )

A. P,B. PC. P1,1D. P,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABF中,以AB為直徑的作⊙O,∠BAF的平分線AD交⊙O于點DAF與⊙O交于點E,過點B的切線交AF的延長線于點C

1)求證:∠FBC=∠FAD

2)若,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,以AB為直徑的圓OAC于點D,交BC于點E,以點B為頂點作∠CBF,使得∠CBFBAC,交AC延長線于點F連接BD、AE,延長AEBF于點G,

1)求證:BF為⊙O的切線;(2)求證:ACBCBDAG;(3)若BC2CDCF45,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某次“小學生書法比賽”的成績情況,隨機抽取了30名學生的成績進行統(tǒng)計,并將統(tǒng)計情況繪成如圖所示的頻數(shù)分布直方圖,己知成績x(單位:分)均滿足“50x100”,每組成績包含最小值,不包含最大值.根據(jù)圖中信息回答下列問題:

1)圖中a的值為_____;若要繪制該樣本的扇形統(tǒng)計圖,則成績x在“70x80”所對應扇形的圓心角度數(shù)為__________;

2)此次比賽共有300名學生參加,若將“x80”的成績記為“優(yōu)秀”,則獲得“優(yōu)秀“的學生大約有多少人?

3)在這些抽查的樣本中,小明的成績?yōu)?/span>92分,若從成績在“50x60”和“90x100”的學生中任選2人,請用列表或畫樹狀圖的方法,求小明被選中的概率.

查看答案和解析>>

同步練習冊答案