【題目】問題:已知△ABC中,∠ABC=∠ACB=α,點D是AB邊上任意一點,連結CD,在CD的上測作以CD為底邊,α為底角的等腰△CDE,連結AE,試探究BD與AE的數量關系.
(1)嘗試探究如圖1,當α=60°時,小聰同學猜想有BD=AE,以下是他的思路呈現.請你根據他的思路把這個證明過程完整地表達出來;
(2)特例再探如圖2,當α=45°時,請你判斷線段BD與AE之間的數量關系,并進行證明;
(3)問題解決如圖3,當α為任意銳角時,請直接寫出線段BD與AE的數量關系是 . (用含α的式子表示,其中0°<α<90°)
【答案】
(1)
解:BD=AE;∵∠BCA=60°,∠DCE=60°,
∴∠BCD=∠ACE,
在△BDC與△AEC中, ,
∴△BDC≌△AEC,
∴BD=AE
(2)
解:BD= AE;理由如下:
過點D作DF∥AC,交BC于F.
∵DF∥AC,
∴∠ABC=∠DFB.
∵∠ABC=∠ACB=α,α=45°,
∴∠ABC=∠ACB=∠DFB=45°.
∴△DFB是等腰直角三角形
∴BD=DF= BF.
∵AE∥BC,
∴∠ABC+∠BAE=180°.
∵∠DFB+∠DFC=180°
∴∠BAE=∠DFC.
∵∠ABC+∠BCD=∠ADC,∠ABC=∠CDE=α,
∴∠ADE=∠BCD.
∴△ADE∽△FCD.
∴ = .
∵DF∥AC,
∴ = .
∴ = = ,
∴BD= AE
(3)BD=2cosα?AE
【解析】解(3)∵∠ABC=∠ACB=∠EDC=∠ECD=α,
∴∠BCD=∠ACE,
∵∠ADE+∠EDC=∠B+∠BCD,
∴∠ADE=∠ACE,
∴A、D、C、E四點共圓,
∴∠ADE=∠BCD=∠ACE,∠ABC=∠ACB=α,
∴△BDC∽△ACE,
∴ = ,
又∵ =cosα,
∴BD=2cosαAE.
所以答案是:BD=2cosαAE.
科目:初中數學 來源: 題型:
【題目】已知x=2m+n+2和x=m+2n時,多項式x2+4x+6的值相等,且m﹣n+2≠0,則當x=3(m+n+1)時,多項式x2+4x+6的值等于 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線l1∥l2∥l3 , 等腰Rt△ABC的三個頂點A,B,C分別在l1 , l2 , l3上,∠ ACB=90°,AC交l2于點D,已知l1與l2的距離為1,l2與l3的距離為3,則AB:BD的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+3x與x軸的正半軸交于點A,點B在拋物線上,且橫坐標為2,作BC⊥x軸于點C,⊙B經過原點O,點E為⊙B上一動點,點F在AE上.
(1)求點A的坐標;
(2)如圖1,連結OE,當AF:FE=1:2時,求證:△ACF∽△AOE;
(3)如圖2,當點F是AE的中點時,求CF的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A,B,C,D,E在⊙O上,AB⊥CB于點B,tanD=3,BC=2,H為CE延長線上一點,且AH= ,CH=5 .
(1)求證:AH是⊙O的切線;
(2)若點D是弧CE的中點,且AD交CE于點F,求證:HF=HA;
(3)在(2)的條件下,求EF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩家園林公司承接了哈爾濱市平房區(qū)園林綠化工程,已知乙公司單獨完成所需要的天數是甲公司單獨完成所需天數的1.5倍,如果甲公司單獨工作10天,再由乙公司單獨工作15天,這樣就可完成整個工程的三分之二.
(1)求甲、乙兩公司單獨完成這項工程各需多少天?
(2)上級要求該工程完成的時間不得超過30天.甲、乙兩公司合作若干天后,甲公司另有項目離開,剩下的工程由乙公司單獨完成,并且在規(guī)定時間內完成,求甲、乙兩公司合作至少多少天?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,點M是BC邊上的任一點,連接AM并將線段AM繞M順時針旋轉90°得到線段MN,在CD邊上取點P使CP=BM,連接NP,BP.
(1)求證:四邊形BMNP是平行四邊形;
(2)線段MN與CD交于點Q,連接AQ,若△MCQ∽△AMQ,則BM與MC存在怎樣的數量關系?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com