【題目】如圖,△ABC是等腰直角三角形,AC=BC=a,以斜邊AB上的點O為圓心的圓分別與AC,BC相切于點E,F(xiàn),與AB分別交于點G,H,且EH的延長線和CB的延長線交于點D,則CD的長為 .
【答案】 a
【解析】解:如圖,連接OE、OF,
∵由切線的性質(zhì)可得OE=OF=⊙O的半徑,∠OEC=∠OFC=∠C=90°,
∴OECF是正方形,
∵由△ABC的面積可知 ×AC×BC= ×AC×OE+ ×BC×OF,
∴OE=OF= a=EC=CF,BF=BC﹣CF=0.5a,GH=2OE=a,
∵由切割線定理可得BF2=BHBG,
∴ a2=BH(BH+a),
∴BH= a或BH= a(舍去),
∵OE∥DB,OE=OH,
∴△OEH∽△BDH,
∴ ,
∴BH=BD,CD=BC+BD=a+ a= a.
故答案為: a.
連接OE、OF,由切線的性質(zhì)結(jié)合結(jié)合直角三角形可得到正方形OECF,并且可求出⊙O的半徑為0.5a,則BF=a﹣0.5a=0.5a,再由切割線定理可得BF2=BHBG,利用方程即可求出BH,然后又因OE∥DB,OE=OH,利用相似三角形的性質(zhì)即可求出BH=BD,最終由CD=BC+BD,即可求出答案.
科目:初中數(shù)學 來源: 題型:
【題目】雙胞胎兄弟小明和小亮在同一班讀書,周五16:00時放學后,小明和同學走路回家,途中沒有停留,小亮騎車回家,他們各自與學校的距離s(米)與用去的時間t(分)的關(guān)系如圖所示,根據(jù)圖象提供的有關(guān)信息,下列說法中錯誤的是( )
A. 兄弟倆的家離學校1000米
B. 他們同時到家,用時30分
C. 小明的速度為50米/分
D. 小亮中間停留了一段時間后,再以80米/分的速度騎回家
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠1=68°,∠2=68°,∠3=112°.在下列解答中,填空:
(1)因為∠1=68°,∠2=68°(已知),
所以__________(等量代換).
所以____∥_____________________________.
(2)因為∠3+∠4=180°(鄰補角的定義),∠3=112°
,所以____________
又因為∠2=68°,
所以___________(等量代換),
所以____∥_________________________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對下列代數(shù)式作出解釋,其中不正確的是( )
A. a-b:今年小明b歲,小明的爸爸a歲,小明比他爸爸。a-b)歲
B. a-b:今年小明b歲,小明的爸爸a歲,則小明出生時,他爸爸為(a-b)歲
C. ab:長方形的長為acm,寬為bcm,長方形的面積為ab
D. ab:三角形的一邊長為acm,這邊上的高為bcm,此三角形的面積為ab
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用同樣大小的小正方形紙片,按下圖的方式拼正方形:
規(guī)律:第①個圖形中有1個小正方形;
第②個圖形比第①個圖形多3個小正方形;
第③個圖形比第②個圖形多5個小正方形;……
第(n+1)個圖形比第n個圖形多________個小正方形;
可發(fā)現(xiàn)以下結(jié)論:(1)1+3+5+……+(2n-1)= ____________;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】湖州市在2017年被評為“全國文明城市”,在評選過程中,湖州市環(huán)衛(wèi)處每天需負責市區(qū)范圍420千米城市道路的清掃工作,現(xiàn)有環(huán)衛(wèi)工人直接清掃和道路清掃車兩種馬路清掃方式.已知20名環(huán)衛(wèi)工人和1輛道路清掃車每小時可以清掃20千米馬路,30名環(huán)衛(wèi)工人和3輛道路清掃車每小時可以清掃42千米的馬路.
(1)1名環(huán)衛(wèi)工人和1輛道路清掃車每小時各能清掃多長的馬路?
(2)已知2017年環(huán)衛(wèi)處安排了50名環(huán)衛(wèi)工人參與了直接清掃工作,為保證順利完成每日的420千米清掃工作,需派出多少輛道路清掃車參與工作(已知2017年環(huán)衛(wèi)工人與清掃車每天工作時間為6小時)?
(3)為了鞏固文明城市創(chuàng)建成果,從2018年5月開始,環(huán)衛(wèi)處新增了一輛清掃車參與工作,同時又增加了若干個環(huán)衛(wèi)工人參與直接清掃,使得每日能夠較早的完成清掃工作。2018年6月市環(huán)衛(wèi)處擴大清掃范圍60千米,同時又增加了20名環(huán)衛(wèi)工人直接參與清掃,此時環(huán)衛(wèi)工人和清掃車每日工作時間仍與5月份相同,那么2018年5月環(huán)衛(wèi)處增加了多少名環(huán)衛(wèi)工人參與直接清掃?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解決農(nóng)民工子女入學難的問題,我市建立了一套進城農(nóng)民工子女就學的保障機制,其中一項就是免交“借讀費”.據(jù)統(tǒng)計,2004年秋季有名農(nóng)民工子女進入主城區(qū)中小學學習,預計2005年秋季進入主城區(qū)中小學學習的農(nóng)民工子女比2004年有所增加,其中小學增加,中學增加,這樣,2005年秋季將新增名農(nóng)民工子女在主城區(qū)中小學學習.
(1)如果按小學每生每年收“借讀費”元,中學每生每年收“借讀費”元計算,求2005年新增加的名中小學學生共免收多少“借讀費”?
(2)如果小學每增加名學生需配備名教師,中學每增加名學生需配備名教師,若按2005年秋季入學后,農(nóng)民工子女在主城區(qū)中小學就讀的學生增加的人數(shù)計算,一共需要配備多少名中小學教師?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點P在△ABC的邊AC上,下列條件中,不能判斷△ABP∽△ACB的是( )
A.∠ABP=∠C
B.∠APB=∠ABC
C.AB2=AP?AC
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC為等腰直角三角形,∠BAC=90°,BC=2,E為AB上任意一動點,以CE為斜邊作等腰Rt△CDE,連接AD,下列說法:①∠BCE=∠ACD;②AC⊥ED;③△AED∽△ECB;④AD∥BC;⑤四邊形ABCD的面積有最大值,且最大值為 .其中,正確的結(jié)論是( )
A.①②④
B.①③⑤
C.②③④
D.①④⑤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com