分析 (1)作AM⊥BC,AN⊥CD垂足分別為M、N,在線段AM上截取AH=CE,連接HE,通過△AMB≌△AND證明四邊形AMCN是正方形,然后再證明△AHE≌△ECF即可.
(2)先證明S四邊形ABCD=S正方形AMCN=16,求出正方形邊長,在RT△ADN中利用勾股定理即可解決.
解答 (1)解:作AM⊥BC,AN⊥CD垂足分別為M、N,在線段AM上截取AH=CE,連接HE.
∵∠AMC=∠MCN=∠=90°,
∴四邊形AMCN是矩形,
∴∠MAN=90°,
∵∠BAD=90°,
∴∠BAD=∠MAN,
∴∠BAM=∠DAN,
在△AMB和△AND中,
$\left\{\begin{array}{l}{∠BAM=∠NAD}\\{∠AMB=∠N}\\{AB=AD}\end{array}\right.$,
∴△AMB≌△AND,
∴AM=AN,
∴四邊形AMCN是正方形,
∴AM=CM,∠ACM=45°,
∵∠ACF=90°,
∴∠ECF=135°,
∵AH=EC,
∴MH=ME,
∴∠MHE=45°,∠AHE=135°=∠ECF,
∵∠FEC+∠AEM=90°,∠HAE+∠AEM=90°,
∴∠FEC=∠HAE,
在△AHE和△ECF中,
$\left\{\begin{array}{l}{∠HAE=∠CEF}\\{AH=EC}\\{∠AHE=∠ECF}\end{array}\right.$,
∴△AHE≌△ECF,
∴AE=EF.
(2)由(1)可知:四邊形AMCN是正方形,△AMB≌△AND,
∴S△AMB=S△AND,
∴S四邊形ABCD=S正方形AMCN=16,
∴AN=MC=4,
∵BC=6,
∴MB=ND=2,
在RT△AND中,∵AN=4,ND=2,
∴AD=$\sqrt{A{N}^{2}+N{D}^{2}}$=$\sqrt{{4}^{2}+{2}^{2}}$=2$\sqrt{5}$.
點(diǎn)評 本題考查全等三角形的判定和性質(zhì)、正方形的判定和性質(zhì)、面積問題等知識,通過輔助線構(gòu)造正方形是解決問題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:2017屆廣東省廣州市九年級下學(xué)期3月月考數(shù)學(xué)試卷(解析版) 題型:單選題
在一次科技作品制作比賽中,某小組八件作品的成績(單位:分)分別是:7,10,9,8,7,9,9,8.對這組數(shù)據(jù),下列說法正確的是( ).
A. 中位數(shù)是8 B. 眾數(shù)是9 C. 平均數(shù)是8 D. 極差是7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2016-2017學(xué)年江西省新余市八年級下學(xué)期第一次段考數(shù)學(xué)試卷(解析版) 題型:判斷題
如圖,四邊形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°.
(1)判斷∠D是否是直角,并說明理由.
(2)求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 5個(gè) | B. | 6個(gè) | C. | 7個(gè) | D. | 8個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com