【題目】如圖,已知∠1=∠2,AC=AD,請增加一個條件,使△ABC≌△AED,你添加的條件是______.
【答案】∠C=∠D(或∠B=∠E或AB=AE).
【解析】
由已知∠1=∠2可得∠BAC=∠EAD,又有AC=AD,還缺少邊或角對應相等的條件,結(jié)合判定方法及圖形進行選擇即可.可根據(jù)判定定理ASA、SAS嘗試添加條件.
解:添加∠C=∠D或∠B=∠E或AB=AE.
(1)添加∠C=∠D.
∵∠1=∠2,
∴∠1+∠BAD=∠2+∠BAD,
∴∠CAB=∠DAE,
在△ABC與△AED中,
,
∴△ABC≌△AED(ASA);
(2)添加∠B=∠E.
∵∠1=∠2,
∴∠1+∠BAD=∠2+∠BAD,
∴∠CAB=∠DAE,
在△ABC與△AED中,
,
∴△ABC≌△AED(AAS);
(3)添加AB=AE
∵∠1=∠2
∴∠1+∠BAD=∠2+∠BAD
∴∠CAB=∠DAE
在△ABC與△AED中,
,
∴△ABC≌△AED(SAS)
故答案是:∠C=∠D或∠B=∠E或AB=AE.
科目:初中數(shù)學 來源: 題型:
【題目】某班男、女同學分別參加植樹活動,要求男、女同學各植8行樹,男同學植的樹比女同學植的樹多,如果每行都比預定的多植一棵樹,那么男、女同學植樹的數(shù)目都超過100棵;如果每行都比預定的少植一棵樹,那么男、女同學植樹的數(shù)目都達不到100棵,這樣原來預定男同學植樹______棵,女同學植樹______棵.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠1=∠2,DE⊥BC,AB⊥BC,試說明:∠A=∠3.
解:因為DE⊥BC,AB⊥BC(已知),
所以∠DEC=∠ABC=90°(____________),
所以DE∥AB(____________________),
所以∠2=________(____________________),
∠1=________(____________________).
因為∠1=∠2(已知),
所以∠A=∠3(等量代換).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學七年級一班在一次活動中要分為四個組,其中第一組有x人,第二組比第一組的少5人,第三組比一、二組的和少15人,第四組與第一組2倍的和是34.
(1)用含x的代數(shù)式表示第二、三、四組的人數(shù),把答案填在下表相應的位置:
第一組 | 第二組 | 第三組 | 第四組 |
x人 |
|
|
|
x=12 |
|
|
|
(2)求x=12時第二、三、四組的人數(shù),把答案填在上表相應的位置;
(3)求七年級一班的總?cè)藬?shù)(用含x的代數(shù)式表示),并求x=10時,該班的總?cè)藬?shù);
(4)x能否等于13,為什么?x能否等于6,為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線a、b、c表示三條公路,現(xiàn)要建一個貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則可供選擇的地址有_______處.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,點E、F分別是BC、CD上的點,且CE=CF,點P、Q分別是AF、EF的中點,連接PD、PQ、DQ,則△PQD的形狀是( 。
A. 等腰三角形 B. 直角三角形
C. 等腰非直角三角形 D. 等腰直角三角形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“十一”黃金周期間,深圳世界之窗風景區(qū)在7天假期中每天旅游的人數(shù)變化如下表(正數(shù)表示比前一天多的人數(shù),負數(shù)表示比前一天少的人數(shù)):
日期 | 1日 | 2日 | 3日 | 4日 | 5日 | 6日 | 7日 |
人數(shù)變化 單位:萬人 | +1.6 | +0.8 | +0.4 | ﹣0.4 | ﹣0.8 | +0.2 | ﹣1.2 |
(1)請判斷七天內(nèi)游客人數(shù)最多的是 日,最少的是 日.
(2)以9月30日的游客人數(shù)為0點,用折線統(tǒng)計圖表示這7天的游客人數(shù)的變化情況.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com