【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(m,n),若點(diǎn)A′(m,n′)的縱坐標(biāo)滿足n′=,則稱點(diǎn)A′是點(diǎn)A的“絕對點(diǎn)”.

(1)點(diǎn)(3,2)的“絕對點(diǎn)”的坐標(biāo)為  

(2)點(diǎn)P是函數(shù)y=4x-1的圖象上的一點(diǎn),點(diǎn)P′是點(diǎn)P的“絕對點(diǎn)”.若點(diǎn)P與點(diǎn)P′重合,求點(diǎn)P的坐標(biāo).

(3)點(diǎn)Q(a,b)的“絕對點(diǎn)”Q′是函數(shù)y=2x2的圖象上的一點(diǎn).當(dāng)0≤a≤2 時(shí),求線段QQ′的最大值.

【答案】(1)(3,1);(2)m=,n=;(3)Q Q′的最大值為142

【解析】分析:(1)根據(jù)絕對點(diǎn)的定義,可得答案;(2)根據(jù)絕對點(diǎn)的定義,可得Q點(diǎn)的坐標(biāo),根據(jù)點(diǎn)在函數(shù)圖象上,可得方程,根據(jù)解方程,可得答案;(3)當(dāng)a≥b時(shí),Q′的坐標(biāo)為(a,a-b),由Q′是函數(shù)y=2x2的圖象上一點(diǎn)知a-b=2a,即b=a-2a.可得QQ′=|a-b-b|=|a-2(a-2a2)|=|4a2-a|,利用二次函數(shù)的圖象和性質(zhì)求出其最大值;當(dāng)a<b時(shí),Q′的坐標(biāo)為(a,b-a),知QQ′=|b-b+a|=|a|,顯然可得其最值.

本題解析:

解:(1)32,

∴點(diǎn)(3,2)的絕對點(diǎn)的縱坐標(biāo)為3﹣2=1,

則點(diǎn)(3,2)的絕對點(diǎn)的坐標(biāo)為(3,1),

故答案為:(3,1)

(2)設(shè)點(diǎn)P的坐標(biāo)為(m,n).

當(dāng)mn時(shí),P′的坐標(biāo)為(m,m﹣n).

PP′重合,則n=m﹣n,

n=4m-1.∴2(4m-1)=m,m= ,n= .

(3)當(dāng)ab時(shí),Q′的坐標(biāo)為(a,a﹣b).

因?yàn)?/span>Q′是函數(shù)y=2x2的圖象上一點(diǎn),

所以a﹣b=2a2

b=a﹣2a 2

QQ′=|a﹣b﹣b|=|a﹣2(a﹣2a2|=|4a2﹣a|

當(dāng)a=2時(shí),QQ′的最大值為14.

當(dāng)ab時(shí),Q′的坐標(biāo)為(a,b﹣a).

QQ′=|b﹣b+a|=|a|

當(dāng)a=2時(shí),QQ′的最大值為2.

綜上所述,Q Q′的最大值為142

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,對角線AC、BD交于點(diǎn)O,且ACBD,AC=BD,SABCD=8cm2,EF、G、H分別是AB、BCCD、DA的中點(diǎn),則四邊形EFGH的周長等于______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,左右兩幅圖案關(guān)于y軸對稱,右圖案中的左右眼睛的坐標(biāo)分別是(2,3),(43),嘴角左右端點(diǎn)的坐標(biāo)分別是(2,1),(41)

(1)試確定左圖案中的左右眼睛和嘴角左右端點(diǎn)的坐標(biāo);

(2)從對稱的角度來考慮,說一說你是怎樣得到的;

(3)直接寫出右圖案中的嘴角左右端點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,四邊形ABCD是平行四邊形,CEBDAD的延長線于點(diǎn)E,CE=AC

1)求證:四邊形ABCD是矩形;

2)若AB=4,AD=3,求四邊形BCED的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小學(xué)時(shí)候大家喜歡玩的幻方游戲,老師稍加創(chuàng)新改成了幻圓游戲,現(xiàn)在將﹣12、﹣34、﹣56、﹣7、8分別填入圖中的圓圈內(nèi),使橫、豎以及內(nèi)外兩圈上的4個(gè)數(shù)字之和都相等,老師已經(jīng)幫助同學(xué)們完成了部分填空,則圖中a+b的值為(  )

A. 6或﹣3 B. 81 C. 1或﹣4 D. 1或﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E為正方形ABCD內(nèi)一點(diǎn),點(diǎn)FCD邊上,且∠BEF90°,EF2BE.點(diǎn)GEF的中點(diǎn),點(diǎn)HDG的中點(diǎn),連接EH并延長到點(diǎn)P,使得PHEH,連接DP

1)依題意補(bǔ)全圖形;

2)求證:DPBE;

3)連接ECCP,猜想線段ECCP的數(shù)量關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新學(xué)期,兩摞觀格相同準(zhǔn)備發(fā)放的數(shù)學(xué)課本整齊地疊放在講合上,請根據(jù)圖中所給出的數(shù)據(jù)信息,解答下列問題:

1)設(shè)課本數(shù)(本),請寫出整齊疊放在桌面上的數(shù)學(xué)課本距離地面的高度的代數(shù)式(用含的代數(shù)式表示);

2)桌面上有56本與題(1)中相同的數(shù)學(xué)課本,整齊疊放成一摞,若從中取走14本,求余下的數(shù)學(xué)課本距離地面的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知線段AB=10cm,在直線AB上取一點(diǎn)C,使AC=16cm,則線段AB的中點(diǎn)與AC的中點(diǎn)的距離為( )

A.13cm26cmB.6cm13cmC.6cm25cmD.3cm13cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新春佳節(jié),電子鞭炮因其安全、無污染開始走俏.某商店經(jīng)銷一種電子鞭炮,已知這種電子鞭炮的成本價(jià)為每盒80元,市場調(diào)查發(fā)現(xiàn),該種電子鞭炮每天的銷售量y(盒)與銷售單價(jià)x(元)有如下關(guān)系:y=﹣2x+320(80≤x≤160).設(shè)這種電子鞭炮每天的銷售利潤為w元.

(1)求wx之間的函數(shù)關(guān)系式;

(2)該種電子鞭炮銷售單價(jià)定為多少元時(shí),每天的銷售利潤最大?最大利潤是多少元?

(3)該商店銷售這種電子鞭炮要想每天獲得2400元的銷售利潤,又想買得快.那么銷售單價(jià)應(yīng)定為多少元?

查看答案和解析>>

同步練習(xí)冊答案