【題目】新學期,兩摞觀格相同準備發(fā)放的數學課本整齊地疊放在講合上,請根據圖中所給出的數據信息,解答下列問題:
(1)設課本數(本),請寫出整齊疊放在桌面上的數學課本距離地面的高度的代數式(用含的代數式表示);
(2)桌面上有56本與題(1)中相同的數學課本,整齊疊放成一摞,若從中取走14本,求余下的數學課本距離地面的高度.
科目:初中數學 來源: 題型:
【題目】一家商店進行裝修,若請甲、乙兩個裝修組同時施工,8天可以完成,需付兩組費用共3520元,若先請甲組單獨做6天,再請乙組單獨做12天可以完成,需付費用3480元,問:
(1)甲,乙兩組工作一天,商店各應付多少錢?
(2)已知甲單獨完成需12天,乙單獨完成需24天,單獨請哪個組,商店所需費用最少?
(3)若裝修完后,商店每天可贏利200元,你認為如何安排施工更有利于商店?請你幫助商店決策.(可用(1)(2)問的條件及結論)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=4cm,動點E從點A出發(fā),以1cm/秒的速度沿折線AB—BC的路徑運動,到點C停止運動.過點E作 EF∥BD,EF與邊AD(或邊CD)交于點F,EF的長度y(cm)與點E的運動時間x(秒)的函數圖象大致是
A. B.
C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,點A的坐標為(m,n),若點A′(m,n′)的縱坐標滿足n′=,則稱點A′是點A的“絕對點”.
(1)點(3,2)的“絕對點”的坐標為 .
(2)點P是函數y=4x-1的圖象上的一點,點P′是點P的“絕對點”.若點P與點P′重合,求點P的坐標.
(3)點Q(a,b)的“絕對點”Q′是函數y=2x2的圖象上的一點.當0≤a≤2 時,求線段QQ′的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是( )
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,△ABC的三個頂點的位置如圖所示,點A′的坐標是(﹣2,2),現將△ABC平移,使點A變換為點A′,點B′、C′分別是B、C的對應點.
(1)請畫出平移后的△A′B′C′(不寫畫法);
(2)并直接寫出點B′、C′的坐標:B′( )、C′( );
(3)若△ABC內部一點P的坐標為(a,b),則點P的對應點P′的坐標是( ).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲車從A地駛往B地,同時乙車從B地駛往A地,兩車相向而行,勻速行駛,甲車距B地的距離y(km)與行駛時間x(h)之間的函數關系如圖所示,乙車的速度是60km/h.
(1)求甲車的速度;
(2)當甲乙兩車相遇后,乙車速度變?yōu)閍(km/h),并保持勻速行駛,甲車速度保持不變,結果乙車比甲車晚38分鐘到達終點,求a的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等邊△ABC的邊長為2cm,點P從點A出發(fā),以1cm/s的速度沿AC向點C運動,到達點C停止;同時點Q從點A出發(fā),以2cm/s的速度沿AB﹣BC向點C運動,到達點C停止,設△APQ的面積為y(cm2),運動時間為x(s),則下列最能反映y與x之間函數關系的圖象是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線EF與MN相交于點O,∠MOE=30°,將一直角三角尺的直角頂點與點O重合,直角邊OA與MN重合,OB在∠NOE內部.操作:將三角尺繞點O以每秒5°的速度沿順時針方向旋轉一周,設運動時間為t(s).
(1)當t為何值時,直角邊OB恰好平分∠NOE?此時OA是否平分∠MOE?請說明理由;
(2)若在三角尺轉動的同時,直線EF也繞點O以每秒8°的速度順時針方向旋轉一周,當一方先完成旋轉一周時,另一方同時停止轉動.
①當t為何值時,OE平分∠AOB?
②OE能否平分∠NOB?若能請直接寫出t的值;若不能,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com