【題目】綜合與實(shí)踐
在數(shù)學(xué)活動課上,老師出示了這樣一個問題:如圖1,在中,,,,點(diǎn)為邊上的任意一點(diǎn).將沿過點(diǎn)的直線折疊,使點(diǎn)落在斜邊上的點(diǎn)處.問是否存在是直角三角形?若不存在,請說明理由;若存在,求出此時的長度.
探究展示:勤奮小組很快找到了點(diǎn)、的位置.
如圖2,作的角平分線交于點(diǎn),此時沿所在的直線折疊,點(diǎn)恰好在上,且,所以是直角三角形.
問題解決:
(1)按勤奮小組的這種折疊方式,的長度為 .
(2/span>)創(chuàng)新小組看完勤奮小組的折疊方法后,發(fā)現(xiàn)還有另一種折疊方法,請?jiān)趫D3中畫出來.
(3)在(2)的條件下,求出的長.
【答案】(1)3;(2)見解析;(3)
【解析】
(1)由勾股定理可求AB的長,由折疊的性質(zhì)可得AC=AE=6,CD=DE,∠C=∠BED=90°,由勾股定理可求解;
(2)如圖所示,當(dāng)DE∥AC,∠EDB=∠ACB=90°,即可得到答案;
(3)由折疊的性質(zhì)可得CF=EF,CD=DE,∠C=∠FED=90°,∠CDF=∠EDF=45°,可得DE=CD=CF=EF,通過證明△DEB∽△CAB,可得 ,即可求解.
(1)∵∠ACB=90°,AC=6,BC=8,
∴,
由折疊的性質(zhì)可得:△ACD≌△AED,
∴AC=AE=6,CD=DE,∠C=∠BED=90°,
∴BE=10-6=4,
∵BD2=DE2+BE2,
∴(8-CD)2=CD2+16,
∴CD=3,
故答案為:3;
(2)如圖3,當(dāng)DE∥AC,△BDE是直角三角形,
(3)∵DE∥AC,
∴∠ACB=∠BDE=90°,
由折疊的性質(zhì)可得:△CDF≌△EDF,
∴CF=EF,CD=DE,∠C=∠FED=90°,∠CDF=∠EDF=45°,
∴EF=DE,
∴DE=CD=CF=EF,
∵DE∥AC,
∴△DEB∽△CAB,
∴,
∴,
∴DE=,
∴
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,校園內(nèi)有一棵與地面垂直的樹,數(shù)學(xué)興趣小組兩次測量它在地面上的影子,第一次是陽光與地面成60°角時,第二次是陽光與地面成30°角時,兩次測量的影長相差8米,則樹高_____________米(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線的圖像與軸的一個交點(diǎn)為,另一交點(diǎn)為,與軸交于點(diǎn),對稱軸是直線.
(1)求該二次函數(shù)的表達(dá)式及頂點(diǎn)坐標(biāo);
(2)畫出此二次函數(shù)的大致圖象;利用圖象回答:當(dāng)取何值時,?
(3)若點(diǎn)在拋物線的圖像上,且點(diǎn)到軸距離小于3,則的取值范圍為 ;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,在平面直角坐標(biāo)系中,△ABC是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,拋物線y=x2+bx+c經(jīng)過A,B兩點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)E是直角△ABC斜邊AB上一動點(diǎn)(點(diǎn)A、B除外),過點(diǎn)E作x軸的垂線交拋物線于點(diǎn)F,當(dāng)線段EF的長度最大時,求點(diǎn)E、F的坐標(biāo);
(3)在(2)的條件下:在拋物線上是否存在一點(diǎn)P,使△EFP是以EF為直角邊的直角三角形?若存在,請求出所有點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市經(jīng)銷一種銷售成本為每件60元的商品,據(jù)市場調(diào)查發(fā)現(xiàn),如果按每件70元銷售,一周能售出500件,若銷售單價每漲1元,每周銷售就減少10件,設(shè)銷售價為每件x元(x≥70),一周的銷售量為y件.
(1)當(dāng)銷售價為每件80元時,一周能銷售多少件?答:_____________件.
(2)寫出y與x的函數(shù)關(guān)系式,并寫出x的取值范圍.
(3)設(shè)一周的銷售利潤為w,寫出w與x的函數(shù)關(guān)系式.
(4)在超市對該種商品投入不超過18000元的情況下,使得一周銷售利潤達(dá)到8000元,銷售單價應(yīng)定為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】武漢二中廣雅中學(xué)為了進(jìn)一步改進(jìn)本校九年級數(shù)學(xué)教學(xué),提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.校教務(wù)處在九年級所有班級中,每班隨機(jī)抽取了6名學(xué)生,并對他們的數(shù)學(xué)學(xué)習(xí)情況進(jìn)行了問卷調(diào)查:我們從所調(diào)查的題目中,特別把學(xué)生對數(shù)學(xué)學(xué)習(xí)喜歡程度的回答(喜歡程度分為:“非常喜歡”、“ 比較喜歡”、“ 不太喜歡”、“ 很不喜歡”,針對這個題目,問卷時要求每位被調(diào)查的學(xué)生必須從中選一項(xiàng)且只能選一項(xiàng))結(jié)果進(jìn)行了統(tǒng)計(jì).現(xiàn)將統(tǒng)計(jì)結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
請你根據(jù)以上提供的信息,解答下列問題:
(1)補(bǔ)全上面的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;
(2)所抽取學(xué)生對數(shù)學(xué)學(xué)習(xí)喜歡程度的眾數(shù)是 ,圖②中所在扇形對應(yīng)的圓心角是 ;
(3)若該校九年級共有960名學(xué)生,請你估算該年級學(xué)生中對數(shù)學(xué)學(xué)習(xí)“不太喜歡”的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為 1 個單位的正方形,建立平面直角坐標(biāo)系后, 的頂點(diǎn)均在格點(diǎn)上,點(diǎn) 的坐標(biāo)為.
(1)畫出關(guān)于 軸對稱的;寫出頂點(diǎn)的坐標(biāo)( , ),( , ).
(2)畫出將繞原點(diǎn) 按順時針旋轉(zhuǎn) 所得的;寫出頂點(diǎn)的坐標(biāo)( , ),( , ),( , ).
(3)與成中心對稱圖形嗎?若成中心對稱圖形,寫出對稱中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖(1),射線AM∥射線BN,AB是它們的公垂線,點(diǎn)D、C分別在AM、BN上運(yùn)動(點(diǎn)D與點(diǎn)A不重合、點(diǎn)C與點(diǎn)B不重合),E是AB邊上的動點(diǎn)(點(diǎn)E與A、B不重合),在運(yùn)動過程中始終保持DE⊥EC.
(1)求證:△ADE∽△BEC;
(2)如圖(2),當(dāng)點(diǎn)E為AB邊的中點(diǎn)時,求證:AD+BC=CD;
(3)當(dāng) AD+DE=AB=時.設(shè)AE=m,請?zhí)骄浚骸?/span>BEC的周長是否與m值有關(guān)?若有關(guān),請用含有m的代數(shù)式表示△BEC的周長;若無關(guān),請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線與軸交于,兩點(diǎn),過點(diǎn)的直線分別與軸及拋物線交于點(diǎn)
(1)求直線和拋物線的表達(dá)式
(2)動點(diǎn)從點(diǎn)出發(fā),在軸上沿的方向以每秒1個單位長度的速度向左勻速運(yùn)動,設(shè)運(yùn)動時間為秒,當(dāng)為何值時,為直角三角形?請直接寫出所有滿足條件的的值.
(3)如圖2,將直線沿軸向下平移4個單位后,與軸,軸分別交于,兩點(diǎn),在拋物線的對稱軸上是否存在點(diǎn),在直線上是否存在點(diǎn),使的值最小?若存在,求出其最小值及點(diǎn),的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com