【題目】如圖,在Rt△ABC中,∠B=45°,AB=AC,點D為BC的中點,直角∠MDN繞點D旋轉,DM,DN分別與邊AB,AC交于E,F兩點,下列結論:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正確結論是( )
A.①②③B.②③④C.①②④D.①②③④
【答案】A
【解析】
根據(jù)等腰直角三角形的性質可得∠CAD=∠B=45°,根據(jù)同角的余角相等求出∠ADF=∠BDE,然后利用“角邊角”證明△BDE和△ADF全等,判斷出③正確;根據(jù)全等三角形對應邊相等可得DE=DF、BE=AF,從而得到△DEF是等腰直角三角形,判斷出①正確;再求出AE=CF,判斷出②正確;根據(jù)BE+CF=AF+AE,利用三角形的任意兩邊之和大于第三邊可得BE+CF>EF,判斷出④錯誤.
解:∵∠B=45°,AB=AC,
∴△ABC是等腰直角三角形,
∵點D為BC中點,
∴AD=CD=BD,AD⊥BC,∠CAD=45°,
∴∠CAD=∠B,
∵∠MDN是直角,
∴∠ADF+∠ADE=90°,
∵∠BDE+∠ADE=∠ADB=90°,
∴∠ADF=∠BDE,
在△BDE和△ADF中,
∴△BDE≌△ADF(ASA),
故③正確;
∴DE=DF、BE=AF,
∴△DEF是等腰直角三角形,
故①正確;
∵AE=AB-BE,CF=AC-AF,
∴AE=CF,
故②正確;
∵BE+CF=AF+AE
∴BE+CF>EF,
故④錯誤;
綜上所述,正確的結論有①②③;
故選:A.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,點E是邊AB上的動點,點F是射線CD上一點,射線ED和射線AF交于點G,且∠AGE=∠DAB.
(1)求線段CD的長;
(2)如果△AEG是以EG為腰的等腰三角形,求線段AE的長;
(3)如果點F在邊CD上(不與點C、D重合),設AE=x,DF=y,求y關于x的函數(shù)解析式,并寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在坐標平面內,點O是坐標原點,A(0,6),B(2,0),且∠OBA=60°,將△OAB沿直線AB翻折,得到△CAB,點O與點C對應.
(1)求點C的坐標:
(2)動點P從點O出發(fā),以2個單位長度/秒的速度沿線段OA向終點A運動,設△POB的面積為S(S≠0),點P的運動時間為t秒,求S與t的關系式,并直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A,B兩地相距80km,甲、乙兩人騎車同時分別從A,B兩地相向而行,假設他們都保持勻速行駛,則他們各自到A地的距離s(km)都是騎車時間t(h)的一次函數(shù),如圖所示.
(1)求乙的s乙與t之間的解析式;
(2)經過多長時間甲乙兩人相距10km?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列游戲對雙方公平的是( )
A. 隨意轉動被等分成個扇形,且分別均勻涂有紅、黃、綠三種顏色的轉盤,若指針指向綠色區(qū)域,則小明勝,否則小亮勝
B. 從一個裝有個紅球,個黃球和個黑球(這些球除顏色外完全相同)的袋中任意摸出一個球,若是紅球,則小明勝,否則小亮勝
C. 投擲一枚均勻的正方體形狀的骰子,若偶數(shù)點朝上,則小明勝,若是奇數(shù)點朝上,則小亮勝
D. 從分別標有數(shù),,,,的五張紙條中,任意抽取一張,若抽到的紙條所標的數(shù)字為偶數(shù),則小明勝,若抽到的紙條所標的數(shù)字為奇數(shù),則小亮勝
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如圖1擺放,點D為AB邊的中點,DE交AC于點P,DF經過點C,且BC=2.
(1)求證:△ADC∽△APD;
(2)求△APD的面積;
(3)如圖2,將△DEF繞點D順時針方向旋轉角α(0°<α<60°),此時的等腰直角三角尺記為△DE′F′,DE′交AC于點M,DF′交BC于點N,試判斷的值是否隨著α的變化而變化?如果不變,請求出的值;反之,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩塊等腰直角三角板△ABC和△DEC如圖擺放,其中∠ACB=∠DCE=90°,F(xiàn)是DE的中點,H是AE的中點,G是BD的中點.
(1)如圖1,若點D、E分別在AC、BC的延長線上,通過觀察和測量,猜想FH和FG的數(shù)量關系為______和位置關系為______;
(2)如圖2,若將三角板△DEC繞著點C順時針旋轉至ACE在一條直線上時,其余條件均不變,則(1)中的猜想是否還成立,若成立,請證明,不成立請說明理由;
(3)如圖3,將圖1中的△DEC繞點C順時針旋轉一個銳角,得到圖3,(1)中的猜想還成立嗎?直接寫出結論,不用證明.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com