【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y= (x>0)的圖象交于A(m,6),B(3,n)兩點,與x軸交于點C,與y軸交于點D,下列結(jié)論:①一次函數(shù)解析式為y=﹣2x+8;②AD=BC;③kx+b﹣ <0的解集為0<x<1或x>3;④△AOB的面積是8,其中正確結(jié)論的個數(shù)是( )
A. 4個 B. 3個 C. 2個 D. 1個
【答案】A
【解析】
根據(jù)雙曲線解析式求得點A、B坐標,待定系數(shù)法可得直線解析式,即可判斷①;由直線解析式求得C、D坐標,由兩點間的距離公式求得AD、BC的長,即可判斷②;由函數(shù)圖象知直線在雙曲線下方時x的范圍即可判斷③;利用割補法求得△AOB的面積即可判斷④.
把點(m,6),B(3,n)分別代入y= (x>0)得m=1,n=2,
∴A點坐標為(1,6),B點坐標為(3,2),
把A(1,6),B(3,2)分別代入y=kx+b,
得 ,解得,
∴一次函數(shù)解析式為y=2x+8,故①正確;
在y=2x+8中,當x=0時,y=8,即D(0,8),
當y=0時,2x+8=0,解得:x=4,即C(4,0),
則AD==,BC==,
∴AD=BC,故②正確;
由函數(shù)圖象知,直線在雙曲線下方時x的范圍是0<x<1或x>3,
∴kx+b6x<0的解集為0<x<1或x>3,故③正確;
分別過點A.B作AE⊥x軸,BF⊥x軸,垂足分別是E.F點.
∵A(1,6),B(3,2),
∴AE=6,BF=2,
∴S△AOB=S△AOCS△BOC=×4×612×4×2=8,故④正確;
故答案選:A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,有下列6個結(jié)論:
①abc<0;
②b<a﹣c;
③4a+2b+c>0;
④2c<3b;
⑤a+b<m(am+b),(m≠1的實數(shù))
⑥2a+b+c>0,其中正確的結(jié)論的有_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】你吃過拉面嗎?實際上在做拉面的過程中就滲透著數(shù)學(xué)知識:一定體積的面團做成拉面,面條的總長度y(m)是面條的粗細(橫截面積)S(mm2)的反比例函數(shù),其圖象如圖所示.
(1)寫出y(m)與S(mm2)的函數(shù)關(guān)系式;
(2)求當面條粗2mm2時,面條的總長度是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)的圖象的一部分,對稱軸是直線.
①; ②; ③不等式的解集是;④若,是拋物線上的兩點,則. 上述個判斷中,正確的是( )
A. ①④ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明、小亮、小梅、小花四人共同探究代數(shù)式x2-4x+5的值的情況,他們作了如下分工:小明負責找值為1時的x值,小亮負責找值為0時的x值,小梅負責找最小值,小花負責找最大值.幾分鐘后,各自通報探究的結(jié)論,其中錯誤的是( )
A.小明認為只有當x=2時,x2-4x+5的值為1;
B.小亮認為找不到實數(shù)x,使x2-4x+5的值為0;
C.小花發(fā)現(xiàn)當取大于2的實數(shù)時,x2-4x+5的值隨x的增大而增大,因此認為沒有最大值;
D.小梅發(fā)現(xiàn)x2-4x+5的值隨x的變化而變化,因此認為沒有最小值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以的邊、為邊分別向外作和,且,,連接、、.
(1)求證:;
(2)試判斷與的面積之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小山同學(xué)結(jié)合學(xué)習(xí)一次函數(shù)的經(jīng)驗和自己的思考,按以下方式探究函數(shù)的圖象與性質(zhì),并嘗試解決相關(guān)問題.
請將以下過程補充完整:
(1)判斷這個函數(shù)的自變量x的取值范圍是________________;
(2)補全表格:
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
|
|
|
(3)在平面直角坐標系中畫出函數(shù)的圖象:
(4)填空:當時,相應(yīng)的函數(shù)解析式為___(用不含絕對值符合的式子表示);
(5)寫出直線與函數(shù)的圖象的交點坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人分別從A,B兩地同時出發(fā),勻速相向而行.甲的速度大于乙的速度,甲到達B地后,乙繼續(xù)前行.設(shè)出發(fā)xh后,兩人相距ykm,圖中折線表示從兩人出發(fā)至乙到達A地的過程中y與x之間的函數(shù)關(guān)系.
(1)根據(jù)圖中信息,求出點Q的坐標,并說明它的實際意義;
(2)求甲、乙兩人的速度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com