【題目】如圖,拋物線y=a(x﹣)(x+3)交x軸于點A、B,交y軸于點C,tan∠CAO=.
(1)求a值;
(2)點P為第一象限內拋物線上一點,點P的橫坐標為t,連接PA,PC,設△PAC的面積為S,求S與t之間的關系式;
(3)在(2)的條件下,點Q在第一象限內的拋物線上(點Q在點P的上方),過點P作PE⊥AB,垂足為E,點D在線段AQ上,點F在線段AO上連接ED、DF,DE交AP于點G,若∠QDF+∠QDE=180°,∠DFA+∠AED=90°,PG=PE,PG:EF=3:2,求點P的坐標.
【答案】(1)a=﹣;(2)S=t2+t;(3)點P(1,3)
【解析】
(1)由題意可求點A,點B坐標,由銳角三角函數可求點C坐標,代入解析式可求解a的值;
(2)點P(t,﹣t2﹣t+4),由面積關系可求解;
(3)如圖3,延長AQ,EP交于點H,連接GF,由四點共圓可證點A,點D,點G,點F四點共圓,可得∠ADF=∠AGF,∠QDE=∠AFG,設PG=PE=3a,EF=2a,由勾股定理可求a=,可求點P坐標,代入解析式可求解.
解:(1)∵拋物線y=a(x﹣)(x+3)交x軸于點A、B,
∴0=a(x﹣)(x+3)
∴x1=,x2=﹣3,
∴點A(﹣3,0),點B(,0),
∴AO=3,
∵tan∠CAO==,
∴CO=4,
∴點C(0,4)
∴4=a(0﹣)(0+3),
∴a=﹣
(2)∵y=﹣(x﹣)(x+3)
∴y=﹣x2﹣x+4,
∵點P的橫坐標為t,
∴點P(t,﹣t2﹣t+4),
∴S= [4+(﹣t2﹣x+4)]t+×3×4﹣×(t+3)(﹣t2﹣t+4)=t2+t;
(3)如圖3,延長AQ,EP交于點H,連接GF,
∵∠QDF+∠QDE=180°,且∠QDE+∠ADE=180°,
∴∠ADE=∠QDF,
∴∠ADF=∠QDE,
∵∠DFA+∠AED=90°,∠AED+∠DEP=90°,
∴∠AFD=∠DEP,
∴∠HAE=∠AHE,且HE⊥AE,
∴∠HAE=∠AHE=45°,
∴AE=EH=t+3,
∵PE=PG,
∴∠PGE=∠PEG,
∴∠PGE=∠AFD=∠AGD,
∴點A,點D,點G,點F四點共圓,
∴∠ADF=∠AGF,∠QDE=∠AFG,
∴∠AGF=∠AFG,
∴AF=AG,
設PG=PE=3a,EF=2a,
∴AF=t+3﹣2a=AG,AP=t+3﹣2a+3a=t+3+a,
∵AP2=PE2+AE2,
∴(t+3+a)2=9a2+(t+3)2,
∴a=,
∴3a=
∴點P(t,)
∴=﹣t2﹣t+4,
∴t=1,t=﹣3(不合題意舍去)
∴點P(1,3)
科目:初中數學 來源: 題型:
【題目】如圖,在中,點是線段上的動點,將線段繞點逆時針旋轉得到線段,連接.若已知,設兩點間的距離為兩點間的距離為兩點間的距離為.(若同學們打印的BC的長度如不是,請同學們重新畫圖、測量)
小明根據學習函數的經驗,分別對自變量x的變化而變化的規(guī)律進行了探究,下面是小明的探究過程,請補充完整:
(1)按照下表中自變量的值進行取點、畫圖、測量,分別得到了與的幾組對應值,如下表:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
7.03 | 6.20 | 5.44 | 4.76 | 4.21 | 3.85 | 3.73 | 3.87 | 4.26 | |
5.66 | 4.32 | 1.97 | 1.59 | 2.27 | 3.43 | 4.73 |
寫出的值.(保留1位小數)
(2)在同一平面直角坐標系中,描出補全后的表中各組數值所對應的點,并畫出函數的圖象;
(3)結合函數圖像,解決問題:
①當在線段上時,的長度約為________;
②當為等腰三角形時,的長度約為_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】七巧板是我國古老的益智玩具,受到全世界人的追捧.下圖是由一副“現代智力七巧板經無縫拼接且沒有重疊的軸對稱花朵型圖案,直線AB為對稱軸,其中①②③是直徑為1的圓與半圓,④為直角梯形,⑤為等腰直角三角形,⑥⑦是有一組對邊平行且銳角皆為45°的拼板.若已知④的周長是AB的3倍,⑥的周長是AB的5倍,則圖中線段AC的長度為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=ax2+(3b+1)x+b﹣3(a>0),若存在實數m,使得點P(m,m)在該拋物線上,我們稱點P(m,m)是這個拋物線上的一個“和諧點”.
(1)當a=2,b=1時,求該拋物線的“和諧點”;
(2)若對于任意實數b,拋物線上恒有兩個不同的“和諧點”A、B.
①求實數a的取值范圍;
②若點A,B關于直線y=﹣x﹣(+1)對稱,求實數b的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC,直線PQ垂直平分AC,與邊AB交于E,連接CE,過點C作CF平行于BA交PQ于點F,連接AF.
(1)求證:△AED≌△CFD;
(2)求證:四邊形AECF是菱形.
(3)若AD=3,AE=5,則菱形AECF的面積是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明參加某個智力競答節(jié)目,答對最后兩道單選題就順利通關.第一道單選題有3個選項,第二道單選題有4個選項,這兩道題小明都不會,不過小明還有一個“求助”沒有用(使用“求助”可以讓主持人去掉其中一題的一個錯誤選項).
(1)如果小明第一題不使用“求助”,那么小明答對第一道題的概率是 .
(2)如果小明將“求助”留在第二題使用,請用樹狀圖或者列表來分析小明順利通關的概率.
(3)從概率的角度分析,你建議小明在第幾題使用“求助”.(直接寫出答案)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=20cm,BC=15cm,現有動點P從點A出發(fā),沿AC向點C方向運動,動點Q從點C出發(fā),沿CB向點B方向運動,如果點P的速度是4cm/秒,點Q的速度是2cm/秒,它們同時出發(fā),當有一點到達所在線段的端點時,就停止運動.設運動時間為t秒.求:
(1)當t=3秒時,這時,P,Q兩點之間的距離是多少?
(2)若△CPQ的面積為S,求S關于t的函數關系式.
(3)當t為多少秒時,以點C,P,Q為頂點的三角形與△ABC相似?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與軸相交于兩點(點位于點的左側),與軸相交于點,是拋物線的頂點,直線是拋物線的對稱軸,且點的坐標為.
(1)求拋物線的解析式.
(2)已知為線段上一個動點,過點作軸于點.若的面積為.
①求與之間的函數關系式,并寫出自變量的取值范圍;
②當取得最值時,求點的坐標.
(3)在(2)的條件下,在線段上是否存在點,使為等腰三角形?如果存在,請求出點的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,∠ABD=90°,AD= 5,BD=3,點P從點A出發(fā),沿折線AB- BC以每秒個單位長度的速度向終點C運動(點P不與點A、B、C重合).在點P運動的過程中,過點P作AB所在直線的垂線.交邊AD或邊CD于點Q,以PQ為一邊作矩形PQMN,且QM=2.MN與BD在PQ的同側,設點P的運動時間為t(秒),
(1)當t= 5時,求線段CP的長;
(2)求線段PQ的長(用含t的代數式表示);
(3)當點M落在BD上時,求t的值;
(4)當矩形PQMN與ABCD重疊部分圓形為五邊形時,直接寫出t的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com