【題目】如圖,菱形ABCD中,∠B=60°,AB=3cm,過點A作∠EAF=60°,分別交DC,BC的延長線于點E,F,連接EF.
(1)如圖1,當CE=CF時,判斷△AEF的形狀,并說明理由;
(2)若△AEF是直角三角形,求CE,CF的長度;
(3)當CE,CF的長度發(fā)生變化時,△CEF的面積是否會發(fā)生變化,請說明理由.
【答案】(1) △AEF是等邊三角形,證明見解析;(2) CF=,CE=6或CF=6,CE=;(3) △CEF的面積不發(fā)生變化,理由見解析.
【解析】
(1)證明△BCE≌△DCF(SAS),得出∠BE=DF,CBE=∠CDF,證明△ABE≌△ADF(SAS),得出AE=AF,即可得出結論;
(2)分兩種情況:①∠AFE=90°時,連接AC、MN,證明△MAC≌△NAD(ASA),得出AM=AN,CM=DN,證出△AMN是等邊三角形,得出AM=MN=AN,設AM=AN=MN=m,DN=CM=b,BM=CN=a,證明△CFN∽△DAN,得出,得出FN=,AF=m+,同理AE=m+,在Rt△AEF中,由直角三角形的性質得出AE=2AF,得出m+=2(m+),得出b=2a,因此,得出CF=AD=,同理CE=2AB=6;
②∠AEF=90°時,同①得出CE=AD=,CF=2AB=6;
(3)作FH⊥CD于H,如圖4所示:由(2)得BM=CN=a,CM=DN=b,證明△ADN∽△FCN,得出,由平行線得出∠FCH=∠B=60°,△CEM∽△BAM,得出,得出,求出CF×CE=AD×AB=3×3=9,由三角函數(shù)得出CH=CF×sin∠FCH=CF×sin60°=CF,即可得出結論.
解:(1)△AEF是等邊三角形,理由如下:
連接BE、DF,如圖1所示:
∵四邊形ABCD是菱形,
∴AB=BC=DC=AD,∠ABC=∠ADC,
在△BCE和△DCF中,,
∴△BCE≌△DCF(SAS),
∴∠BE=DF,CBE=∠CDF,
∴∠ABC+∠CBE=∠ADC+∠CDF,
即∠ABE=∠ADF,
在△ABE和△ADF中,,
∴△ABE≌△ADF(SAS),
∴AE=AF,又∵∠EAF=60°,
∴△AEF是等邊三角形;
(2)分兩種情況:
①∠AFE=90°時,連接AC、MN,如圖2所示:
∵四邊形ABCD是菱形,
∴AB=BC=DC=AD=3,∠D=∠B=60°,AD∥BC,AB∥CD,
∴△ABC和△ADC是等邊三角形,
∴AC=AD,∠ACM=∠D=∠CAD=60°=∠EAF,
∴∠MAC=∠NAD,
在△MAC和△NAD中,,
∴△MAC≌△NAD(ASA),
∴AM=AN,CM=DN,
∵∠EAF=60°,
∴△AMN是等邊三角形,
∴AM=MN=AN,
設AM=AN=MN=m,DN=CM=b,BM=CN=a,
∵CF∥AD,
∴△CFN∽△DAN,
∴,
∴FN=,
∴AF=m+,
同理:AE=m+,
在Rt△AEF中,∵∠EAF=60°,
∴∠AEF=30°,
∴AE=2AF,
∴m+=2(m+),
整理得:b2﹣ab﹣2a2=0,
(b﹣2a)(b+a)=0,
∵b+a≠0,
∴b﹣2a=0,
∴b=2a,
∴=,
∴CF=AD=,
同理:CE=2AB=6;
②∠AEF=90°時,連接AC、MN,如圖3所示:
同①得:CE=AD=,CF=2AB=6;
(3)當CE,CF的長度發(fā)生變化時,△CEF的面積不發(fā)生變化;理由如下:
作FH⊥CD于H,如圖4所示:
由(2)得:BM=CN=a,CM=DN=b,
∵AD∥CF,
∴△ADN∽△FCN,
∴,
∵CE∥AB,
∴∠FCH=∠B=60°,△CEM∽△BAM,
∴,
∴,
∴CF×CE=AD×AB=3×3=9,
∵CH=CF×sin∠FCH=CF×sin60°=CF,
△CEF的面積=CE×FH=CE×CF=×9×=,∴△CEF的面積是定值,不發(fā)生變化.
科目:初中數(shù)學 來源: 題型:
【題目】定義:如果三角形的兩個內角與滿足,那么稱這樣的三角形為“類直角三角形”.
嘗試運用
(1)如圖1,在中,,,,是的平分線.
①證明是“類直角三角形”;
②試問在邊上是否存在點(異于點),使得也是“類直角三角形”?若存在,請求出的長;若不存在,請說明理由.
類比拓展
(2)如圖2,內接于,直徑,弦,點是弧上一動點(包括端點,),延長至點,連結,且,當是“類直角三角形”時,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學興趣小組研究某型號冷柜溫度的變化情況,發(fā)現(xiàn)該冷柜的工作過程是:當溫度達到設定溫度時,制冷停止,此后冷柜中的溫度開始逐漸上升,當上升到時,制冷開始,溫度開始逐漸下降,當冷柜自動制冷至時,制冷再次停止,……,按照以上方式循環(huán)進行.
同學們記錄了44內15個時間點冷柜中的溫度隨時間的變化情況,制成下表:
(1)通過分析發(fā)現(xiàn),冷柜中的溫度是時間的函數(shù).
①當時,寫出一個符合表中數(shù)據的函數(shù)解析式 ;
②當時,寫出一個符合表中數(shù)據的函數(shù)解析式 ;
(2)的值為 ;
(3)如圖,在直角坐標系中,已描出了上表中部分數(shù)據對應的點,請描出剩余對應的點,并畫出時溫度隨時間變化的函數(shù)圖象.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】六一兒童節(jié),小文到公園游玩.看到公園的一段人行彎道MN(不計寬度),如圖,它與兩面互相垂直的圍墻OP、OQ之間有一塊空地MPOQN(MP⊥OP,NQ⊥OQ),他發(fā)現(xiàn)彎道MN上任一點到兩邊圍墻的垂線段與圍墻所圍成的矩形的面積都相等,比如:A、B、C是彎道MN上的三點,矩形ADOG、矩形BEOH、矩形CFOI的面積相等.愛好數(shù)學的他建立了平面直角坐標系(如圖),圖中三塊陰影部分的面積分別記為S1、S2、S3,并測得S2=6(單位:平方米).OG=GH=HI.
(1)求S1和S3的值;
(2)設T(x,y)是彎道MN上的任一點,寫出y關于x的函數(shù)關系式;
(3)公園準備對區(qū)域MPOQN內部進行綠化改造,在橫坐標、縱坐標都是偶數(shù)的點處種植花木(區(qū)域邊界上的點除外),已知MP=2米,NQ=3米.問一共能種植多少棵花木?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】函數(shù)y=kx,y=,y=的圖象如圖所示,下列判斷正確的有_____.(填序號)①k,a,b都是正數(shù);②函數(shù)y=與y=的圖象會出現(xiàn)四個交點;③A,D兩點關于原點對稱;④若B是OA的中點,則a=4b.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=2,O為對角線AC的中點,點P、Q分別從A和B兩點同時出發(fā),在邊AB和BC上勻速運動,并且同時到達終點B、C,連接PO、QO并延長分別與CD、DA交于點M、N.在整個運動過程中,圖中陰影部分面積的大小變化情況是( )
A. 一直增大 B. 一直減小 C. 先減小后增大 D. 先增大后減小
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一個直角三角形紙片放置在平面直角坐標系中,已知點,點,點.是邊上的一動點(點不與點、重合),沿著折疊該紙片,得點的對應點.
(1)如圖1,當點在第一象限,且滿足時,求點的坐標;
(2)如圖2,當為中點時,求的長;
(3)當時,直接寫出點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點是反比例函數(shù)圖象上的一點,過點作軸于點,連接,的面積為2.點的坐標為.若一次函數(shù)的圖象經過點,交雙曲線的另一支于點,交軸點.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)若為軸上的一個動點,且的面積為5,請求出點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線與x軸、y軸相交于P、Q兩點,與的圖象相交于兩點,連接OA,OB,給出下列結論:①;②;③;④不等式的解集是或,其中正確的是( )
A.②③B.③④C.①②③④D.②③④
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com