【題目】如圖所示,ACAB,AC=2,點D是以AB為直徑的半圓O 上一動點,DECD交直線AB于點E,設

(1)時,求弧BD的長;

(2)時,求線段BE的長;

(3)若要使點E在線段BA的延長線上,的取值范圍是 .(直接寫出答案)

【答案】(1);(2);(3)60°α90°

【解析】

(1)首先連接OD,由圓周角定理,可求得∠DOB的度數(shù),又由⊙O的直徑為2,即可求得其半徑,然后由弧長公式,即可求得答案;
(2)首先證得△ACD∽△BED,然后由相似三角形的對應邊成比例,可得=,繼而求得答案;
(3)首先求得A與E重合時α的度數(shù),則可求得點E在線段BA的延長線時,α的取值范圍.

解:(1

如圖,連接OD,

α20°,∴∠DOB40°

AB2,

∴⊙O的半徑為:

的長為;

2)∵AB是⊙O的直徑,

∴∠ADB90°,∵α30°,∴∠B60°,∵ACAB,DECD

∴∠CAB=∠CDE90°,∴∠CAD90°α60°,

∴∠CAD=∠B,∵∠CDA+ADE=∠ADE+BDE90°,

∴∠CDA=∠BDE,∴△ACD∽△BED

=,∵AB2,α30°,

BDAB,∴AD3,

=,∴BE;

3

如圖,當E與A重合時,

∵AB是直徑,AD⊥CD,
∴∠ADB=∠ADC=90°,
∴C,D,B共線,
∵AC⊥AB,
∴在Rt△ABC中,AB=2,AC=2,
∴tan∠ABC==,
∴∠ABC=30°,
∴α=∠DAB=90°-∠ABC=60°,
當E′在BA的延長線上時,如圖,可得∠D′AB>∠DAB=60°,
∵0°<α<90°,
α的取值范圍是:60°α90°
故答案為:60°α90°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O是△ABC的內切圓,切點分別為D、E、F,A=80°,點P為⊙O上任意一點(不與E、F重合),則∠EPF=______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校隨機抽取九年級部分同學接受一次內容為最適合自己的考前減壓方式的調查活動,學校收集整理數(shù)據(jù)后,將減壓方式分為五類,并繪制了圖1、圖2兩個不完整的統(tǒng)計圖,請根據(jù)圖中的信息解答下列問題:

九年級接受調查的同學共有多少名,并補全條形統(tǒng)計圖;

九年級共有500名學生,請你估計該校九年級聽音樂減壓的學生有多少名;

若喜歡交流談心5名同學中有三名男生和兩名女生,心理老師想從5名同學中任選兩名同學進行交流,請用畫樹狀圖或列表的方法求同時選出的兩名同學都是女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學課外興趣活動小組準備圍建一個矩形苗圃,其中一邊靠墻,另外三邊用長為30米的籬笆圍成.已知墻長為18(如圖所示),設這個苗圃垂直于墻的一邊長為x米.

(1)若苗圃的面積為72平方米,求x的值;

(2)這個苗圃的面積能否是120平方米?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AB=AC,以AB為直徑的⊙OBC相交于點D,與CA的延長線相交于點E,過點DDFAC于點F.

(1)試說明DF是⊙O的切線;

(2)AC=3AE=6,求tanC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c的圖象與x軸交于A(﹣5,0),B(1,0)兩點,與y軸交于點C,拋物線的對稱軸與x軸交于點D.

(1)求拋物線的函數(shù)表達式;

(2)如圖1,點E(x,y)為拋物線上一點,且﹣5<x<﹣2,過點E作EF∥x軸,交拋物線的對稱軸于點F,作EH⊥x軸于點H,得到矩形EHDF,求矩形EHDF周長的最大值;

(3)如圖2,點P為拋物線對稱軸上一點,是否存在點P,使以點P,A,C為頂點的三角形是直角三角形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為4,以AB為一邊作等邊△ABE,使點E落在正方形ABCD的內部,連接ACBE于點F,連接CE、DE,則下列說法中:①△ADE≌△BCE;②∠ACE=30°;AF=CF; =2+,其中正確的有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,D,E分別是AB,AC上的點,∠AED=ABC,∠BAC的平分線AFDE于點G,交BC于點F

1)試寫出圖中所有的相似三角形;

2)若,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x2(2m1)xm240.

(1)m為何值時,方程有兩個不相等的實數(shù)根?

(2)若邊長為5的菱形的兩條對角線的長分別為方程兩根的2倍,求m的值.

查看答案和解析>>

同步練習冊答案